Functional Space Consisted by Continuous Functions on Topological Space

In this article, using the Mizar system [1], [2], first we give a definition of a functional space which is constructed from all continuous functions defined on a compact topological space [5]. We prove that this functional space is a Banach space [3]. Next, we give a definition of a function space...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Formalized Mathematics Ročník 29; číslo 1; s. 49 - 62
Hlavní autoři: Yamazaki, Hiroshi, Miyajima, Keiichi, Shidama, Yasunari
Médium: Journal Article
Jazyk:angličtina
japonština
Vydáno: Bialystok Walter de Gruyter GmbH 01.04.2021
Sciendo
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Témata:
ISSN:1898-9934, 1426-2630, 1898-9934
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this article, using the Mizar system [1], [2], first we give a definition of a functional space which is constructed from all continuous functions defined on a compact topological space [5]. We prove that this functional space is a Banach space [3]. Next, we give a definition of a function space which is constructed from all continuous functions with bounded support. We also prove that this function space is a normed space.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1898-9934
1426-2630
1898-9934
DOI:10.2478/forma-2021-0005