Functional Space Consisted by Continuous Functions on Topological Space
In this article, using the Mizar system [1], [2], first we give a definition of a functional space which is constructed from all continuous functions defined on a compact topological space [5]. We prove that this functional space is a Banach space [3]. Next, we give a definition of a function space...
Gespeichert in:
| Veröffentlicht in: | Formalized Mathematics Jg. 29; H. 1; S. 49 - 62 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch Japanisch |
| Veröffentlicht: |
Bialystok
Walter de Gruyter GmbH
01.04.2021
Sciendo De Gruyter Brill Sp. z o.o., Paradigm Publishing Services |
| Schlagworte: | |
| ISSN: | 1898-9934, 1426-2630, 1898-9934 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this article, using the Mizar system [1], [2], first we give a definition of a functional space which is constructed from all continuous functions defined on a compact topological space [5]. We prove that this functional space is a Banach space [3]. Next, we give a definition of a function space which is constructed from all continuous functions with bounded support. We also prove that this function space is a normed space. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1898-9934 1426-2630 1898-9934 |
| DOI: | 10.2478/forma-2021-0005 |