Functional Space Consisted by Continuous Functions on Topological Space
In this article, using the Mizar system [1], [2], first we give a definition of a functional space which is constructed from all continuous functions defined on a compact topological space [5]. We prove that this functional space is a Banach space [3]. Next, we give a definition of a function space...
Uložené v:
| Vydané v: | Formalized Mathematics Ročník 29; číslo 1; s. 49 - 62 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English Japanese |
| Vydavateľské údaje: |
Bialystok
Walter de Gruyter GmbH
01.04.2021
Sciendo De Gruyter Brill Sp. z o.o., Paradigm Publishing Services |
| Predmet: | |
| ISSN: | 1898-9934, 1426-2630, 1898-9934 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this article, using the Mizar system [1], [2], first we give a definition of a functional space which is constructed from all continuous functions defined on a compact topological space [5]. We prove that this functional space is a Banach space [3]. Next, we give a definition of a function space which is constructed from all continuous functions with bounded support. We also prove that this function space is a normed space. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1898-9934 1426-2630 1898-9934 |
| DOI: | 10.2478/forma-2021-0005 |