Registration of PE segment contour deformations in digital high-speed videos

Oncologic therapy of laryngeal cancer may necessitate a total excision of the larynx which results in loss of voice. Voice rehabilitation can be achieved using mucosal tissue vibrations at the upper part of the esophagus which serves as substitute voice generating element (PE segment). The quality o...

Full description

Saved in:
Bibliographic Details
Published in:Medical image analysis Vol. 12; no. 3; pp. 318 - 334
Main Authors: Stiglmayr, Michael, Schwarz, Raphael, Klamroth, Kathrin, Leugering, Günter, Lohscheller, Jörg
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01.06.2008
Subjects:
ISSN:1361-8415, 1361-8423, 1361-8423
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Oncologic therapy of laryngeal cancer may necessitate a total excision of the larynx which results in loss of voice. Voice rehabilitation can be achieved using mucosal tissue vibrations at the upper part of the esophagus which serves as substitute voice generating element (PE segment). The quality of the substitute voice is closely related to vibratory characteristics of the PE segment. By means of a high-speed camera the dynamics of the PE segment can be recorded in real-time. Using image processing the deformations of the PE segment are extracted from the image series as deforming contours. Commonly, the characterization of PE dynamics bases on the spectral analysis of the time varying contour area. However, this constitutes an integral approach which masks most of the specific dynamics of PE deformations. We present an algorithm that automatically registers one segmented contour in a frame of the video sequence to the contour in the next frame to derive discrete 2-D trajectories of PE vibrations. By concatenation of the obtained transformations this approach provides a total registration of PE segment contours. We suggest a mixed-integer programming formulation for the problem that combines an advanced outlier and deformation handling with the introduction of dummy points in regions that newly open up, and that includes normal information in the objective function to avoid unwanted deformations. Numerical experiments show that the implemented alternate convex search algorithm produces robust results which is demonstrated at the example of five high-speed recordings of laryngectomee subjects.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1361-8415
1361-8423
1361-8423
DOI:10.1016/j.media.2007.12.001