Existence and Stability Results for a Tripled System of the Caputo Type with Multi-Point and Integral Boundary Conditions

In this paper, we introduce and investigate the existence and stability of a tripled system of sequential fractional differential equations (SFDEs) with multi-point and integral boundary conditions. The existence and uniqueness of the solutions are established by the principle of Banach’s contractio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Fractal and fractional Ročník 6; číslo 6; s. 285
Hlavní autoři: Manigandan, Murugesan, Subramanian, Muthaiah, Nandha Gopal, Thangaraj, Unyong, Bundit
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.06.2022
Témata:
ISSN:2504-3110, 2504-3110
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we introduce and investigate the existence and stability of a tripled system of sequential fractional differential equations (SFDEs) with multi-point and integral boundary conditions. The existence and uniqueness of the solutions are established by the principle of Banach’s contraction and the alternative of Leray–Schauder. The stability of the Hyer–Ulam solutions are investigated. A few examples are provided to identify the major results.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2504-3110
2504-3110
DOI:10.3390/fractalfract6060285