Existence and Stability Results for a Tripled System of the Caputo Type with Multi-Point and Integral Boundary Conditions
In this paper, we introduce and investigate the existence and stability of a tripled system of sequential fractional differential equations (SFDEs) with multi-point and integral boundary conditions. The existence and uniqueness of the solutions are established by the principle of Banach’s contractio...
Uloženo v:
| Vydáno v: | Fractal and fractional Ročník 6; číslo 6; s. 285 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.06.2022
|
| Témata: | |
| ISSN: | 2504-3110, 2504-3110 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we introduce and investigate the existence and stability of a tripled system of sequential fractional differential equations (SFDEs) with multi-point and integral boundary conditions. The existence and uniqueness of the solutions are established by the principle of Banach’s contraction and the alternative of Leray–Schauder. The stability of the Hyer–Ulam solutions are investigated. A few examples are provided to identify the major results. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2504-3110 2504-3110 |
| DOI: | 10.3390/fractalfract6060285 |