MRIReco.jl: An MRI reconstruction framework written in Julia

Purpose The aim of this work is to develop a high‐performance, flexible, and easy‐to‐use MRI reconstruction framework using the scientific programming language Julia. Methods Julia is a modern, general purpose programming language with strong features in the area of signal/image processing and numer...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Magnetic resonance in medicine Ročník 86; číslo 3; s. 1633 - 1646
Hlavní autoři: Knopp, Tobias, Grosser, Mirco
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Wiley Subscription Services, Inc 01.09.2021
Témata:
ISSN:0740-3194, 1522-2594, 1522-2594
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Purpose The aim of this work is to develop a high‐performance, flexible, and easy‐to‐use MRI reconstruction framework using the scientific programming language Julia. Methods Julia is a modern, general purpose programming language with strong features in the area of signal/image processing and numerical computing. It has a high‐level syntax but still generates efficient machine code that is usually as fast as comparable C/C++ applications. In addition to the language features itself, Julia has a sophisticated package management system that makes proper modularization of functionality across different packages feasible. Our developed MRI reconstruction framework MRIReco.jl can therefore reuse existing functionality from other Julia packages and concentrate on the MRI‐related parts. This includes common imaging operators and support for MRI raw data formats. Results MRIReco.jl is a simple to use framework with a high degree of accessibility. While providing a simple‐to‐use interface, many of its components can easily be extended and customized. The performance of MRIReco.jl is compared to the Berkeley Advanced Reconstruction Toolbox (BART) and we show that the Julia framework achieves comparable reconstruction speed as the popular C/C++ library. Conclusions Modern programming languages can bridge the gap between high performance and accessible implementations. MRIReco.jl leverages this fact and contributes a promising environment for future algorithmic development in MRI reconstruction.
AbstractList The aim of this work is to develop a high-performance, flexible, and easy-to-use MRI reconstruction framework using the scientific programming language Julia.PURPOSEThe aim of this work is to develop a high-performance, flexible, and easy-to-use MRI reconstruction framework using the scientific programming language Julia.Julia is a modern, general purpose programming language with strong features in the area of signal/image processing and numerical computing. It has a high-level syntax but still generates efficient machine code that is usually as fast as comparable C/C++ applications. In addition to the language features itself, Julia has a sophisticated package management system that makes proper modularization of functionality across different packages feasible. Our developed MRI reconstruction framework MRIReco.jl can therefore reuse existing functionality from other Julia packages and concentrate on the MRI-related parts. This includes common imaging operators and support for MRI raw data formats.METHODSJulia is a modern, general purpose programming language with strong features in the area of signal/image processing and numerical computing. It has a high-level syntax but still generates efficient machine code that is usually as fast as comparable C/C++ applications. In addition to the language features itself, Julia has a sophisticated package management system that makes proper modularization of functionality across different packages feasible. Our developed MRI reconstruction framework MRIReco.jl can therefore reuse existing functionality from other Julia packages and concentrate on the MRI-related parts. This includes common imaging operators and support for MRI raw data formats.MRIReco.jl is a simple to use framework with a high degree of accessibility. While providing a simple-to-use interface, many of its components can easily be extended and customized. The performance of MRIReco.jl is compared to the Berkeley Advanced Reconstruction Toolbox (BART) and we show that the Julia framework achieves comparable reconstruction speed as the popular C/C++ library.RESULTSMRIReco.jl is a simple to use framework with a high degree of accessibility. While providing a simple-to-use interface, many of its components can easily be extended and customized. The performance of MRIReco.jl is compared to the Berkeley Advanced Reconstruction Toolbox (BART) and we show that the Julia framework achieves comparable reconstruction speed as the popular C/C++ library.Modern programming languages can bridge the gap between high performance and accessible implementations. MRIReco.jl leverages this fact and contributes a promising environment for future algorithmic development in MRI reconstruction.CONCLUSIONSModern programming languages can bridge the gap between high performance and accessible implementations. MRIReco.jl leverages this fact and contributes a promising environment for future algorithmic development in MRI reconstruction.
Click here for author‐reader discussions
The aim of this work is to develop a high-performance, flexible, and easy-to-use MRI reconstruction framework using the scientific programming language Julia. Julia is a modern, general purpose programming language with strong features in the area of signal/image processing and numerical computing. It has a high-level syntax but still generates efficient machine code that is usually as fast as comparable C/C++ applications. In addition to the language features itself, Julia has a sophisticated package management system that makes proper modularization of functionality across different packages feasible. Our developed MRI reconstruction framework MRIReco.jl can therefore reuse existing functionality from other Julia packages and concentrate on the MRI-related parts. This includes common imaging operators and support for MRI raw data formats. MRIReco.jl is a simple to use framework with a high degree of accessibility. While providing a simple-to-use interface, many of its components can easily be extended and customized. The performance of MRIReco.jl is compared to the Berkeley Advanced Reconstruction Toolbox (BART) and we show that the Julia framework achieves comparable reconstruction speed as the popular C/C++ library. Modern programming languages can bridge the gap between high performance and accessible implementations. MRIReco.jl leverages this fact and contributes a promising environment for future algorithmic development in MRI reconstruction.
PurposeThe aim of this work is to develop a high‐performance, flexible, and easy‐to‐use MRI reconstruction framework using the scientific programming language Julia.MethodsJulia is a modern, general purpose programming language with strong features in the area of signal/image processing and numerical computing. It has a high‐level syntax but still generates efficient machine code that is usually as fast as comparable C/C++ applications. In addition to the language features itself, Julia has a sophisticated package management system that makes proper modularization of functionality across different packages feasible. Our developed MRI reconstruction framework MRIReco.jl can therefore reuse existing functionality from other Julia packages and concentrate on the MRI‐related parts. This includes common imaging operators and support for MRI raw data formats.ResultsMRIReco.jl is a simple to use framework with a high degree of accessibility. While providing a simple‐to‐use interface, many of its components can easily be extended and customized. The performance of MRIReco.jl is compared to the Berkeley Advanced Reconstruction Toolbox (BART) and we show that the Julia framework achieves comparable reconstruction speed as the popular C/C++ library.ConclusionsModern programming languages can bridge the gap between high performance and accessible implementations. MRIReco.jl leverages this fact and contributes a promising environment for future algorithmic development in MRI reconstruction.
Purpose The aim of this work is to develop a high‐performance, flexible, and easy‐to‐use MRI reconstruction framework using the scientific programming language Julia. Methods Julia is a modern, general purpose programming language with strong features in the area of signal/image processing and numerical computing. It has a high‐level syntax but still generates efficient machine code that is usually as fast as comparable C/C++ applications. In addition to the language features itself, Julia has a sophisticated package management system that makes proper modularization of functionality across different packages feasible. Our developed MRI reconstruction framework MRIReco.jl can therefore reuse existing functionality from other Julia packages and concentrate on the MRI‐related parts. This includes common imaging operators and support for MRI raw data formats. Results MRIReco.jl is a simple to use framework with a high degree of accessibility. While providing a simple‐to‐use interface, many of its components can easily be extended and customized. The performance of MRIReco.jl is compared to the Berkeley Advanced Reconstruction Toolbox (BART) and we show that the Julia framework achieves comparable reconstruction speed as the popular C/C++ library. Conclusions Modern programming languages can bridge the gap between high performance and accessible implementations. MRIReco.jl leverages this fact and contributes a promising environment for future algorithmic development in MRI reconstruction.
Author Knopp, Tobias
Grosser, Mirco
Author_xml – sequence: 1
  givenname: Tobias
  orcidid: 0000-0002-1589-8517
  surname: Knopp
  fullname: Knopp, Tobias
  email: tobias.knopp@tuhh.de
  organization: University Medical Center Hamburg‐Eppendorf
– sequence: 2
  givenname: Mirco
  surname: Grosser
  fullname: Grosser, Mirco
  organization: University Medical Center Hamburg‐Eppendorf
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33817833$$D View this record in MEDLINE/PubMed
BookMark eNp1kE1LAzEQhoNUtFYP_gFZ8KKHbfO13US8lOInLULRc9hmJ5C6m9Vkl9J_b7T1UvQ0DPO8L8NzgnqucYDQOcFDgjEd1b4eUpFLeoD6JKM0pZnkPdTHOccpI5Ifo5MQVhhjKXN-hI4ZEyQXjPXR7XzxtADdDFfVTTJxSVwTH3cXWt_p1jYuMb6oYd3492TtbduCS6xLnrvKFqfo0BRVgLPdHKC3-7vX6WM6e3l4mk5mqWZC0FRzXOYmowa4KaWhnC85HusxMJkVFDThRBMAbQQxQuuSL0sjShpv0gAwzAboatv74ZvPDkKrahs0VFXhoOmCohkWQlKWk4he7qGrpvMufhcplnMiMp5H6mJHdcsaSvXhbV34jfr1EoHRFtC-CcGDUdq2xbeO1he2UgSrb_Mqmlc_5mPiei_xW_oXu2tf2wo2_4NqvphvE1_GMZED
CitedBy_id crossref_primary_10_1002_mrm_29292
crossref_primary_10_1109_TBME_2024_3446763
crossref_primary_10_3389_fnins_2023_1130524
crossref_primary_10_1002_mrm_30074
crossref_primary_10_1002_nbm_5052
crossref_primary_10_1162_imag_a_00308
crossref_primary_10_1109_TCC_2024_3476418
crossref_primary_10_1002_mrm_30475
crossref_primary_10_1002_mrm_30146
crossref_primary_10_1002_nbm_5216
crossref_primary_10_1002_nbm_5039
crossref_primary_10_1016_j_neuroimage_2022_119623
crossref_primary_10_1016_j_dib_2022_108050
crossref_primary_10_3389_fnins_2022_848654
crossref_primary_10_1016_j_neuroimage_2021_118738
crossref_primary_10_1177_10943420211067520
crossref_primary_10_1007_s10334_024_01173_8
crossref_primary_10_1137_22M1510935
crossref_primary_10_1002_ima_22707
crossref_primary_10_1002_mrm_29635
crossref_primary_10_1007_s10334_025_01236_4
crossref_primary_10_1016_j_pnmrs_2025_101561
Cites_doi 10.1137/080725891
10.1109/MCSE.2011.37
10.1109/TMI.2009.2027118
10.1109/ICASSP.1998.681704
10.1002/mrm.22428
10.1002/mrm.24751
10.1137/141000671
10.1002/mrm.25161
10.1006/jpdc.1996.0107
10.1145/2833157.2833162
10.1002/mrm.26089
10.1002/mrm.22483
10.6028/jres.049.044
10.1109/TCI.2016.2601296
10.1109/99.660313
10.1002/mrm.24997
10.1016/j.jpdc.2008.05.013
10.1016/0022-0000(78)90014-4
10.1109/TMI.2013.2293974
10.1109/TMI.2006.891502
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1137/080716542
10.1002/mrm.26382
10.1002/mrm.24389
10.1145/1565824.1565827
10.1561/2400000003
10.1109/ISBI.2007.357003
10.1109/TMI.2008.2006526
10.1002/(SICI)1522-2594(199901)41:1<179::AID-MRM25>3.0.CO;2-V
10.1016/j.neuroimage.2012.05.067
10.1002/mrm.1241
10.1155/2007/24727
10.1002/mrm.21391
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.28792
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed
Biochemistry Abstracts 1

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1646
ExternalDocumentID 33817833
10_1002_mrm_28792
MRM28792
Genre article
Journal Article
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3882-c40d7f52fe4fd9f244b406c6e395a2ec141c1eecf81f8ccd4bdf8d25a29fee303
IEDL.DBID 24P
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000636593500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Sun Nov 23 09:46:30 EST 2025
Sat Nov 29 14:51:44 EST 2025
Wed Feb 19 02:27:58 EST 2025
Sat Nov 29 06:34:32 EST 2025
Tue Nov 18 20:40:37 EST 2025
Wed Jan 22 16:28:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Julia
magnetic resonance imaging
open source
image reconstruction
numerical computing
Language English
License Attribution
2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3882-c40d7f52fe4fd9f244b406c6e395a2ec141c1eecf81f8ccd4bdf8d25a29fee303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1589-8517
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28792
PMID 33817833
PQID 2537418547
PQPubID 1016391
PageCount 14
ParticipantIDs proquest_miscellaneous_2508892371
proquest_journals_2537418547
pubmed_primary_33817833
crossref_citationtrail_10_1002_mrm_28792
crossref_primary_10_1002_mrm_28792
wiley_primary_10_1002_mrm_28792_MRM28792
PublicationCentury 2000
PublicationDate September 2021
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 69
2015; 73
2019; 10
2009
2007
1978; 17
2011; 13
1999; 42
2004
1999; 41
2002
2001; 46
2007; 11
1996; 37
2007; 58
2018; 26
2009; 28
2014; 1
2015; 23
2010; 64
2016; 2
1952; 49
2013; 33
2017; 59
2007; 2007
2020
2017; 77
2017; 78
2019
2019; 27
2008; 68
2016
1998; 3
2015
2009; 2
2014; 72
1998; 5
2014; 71
2007; 26
2012; 62
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
Ong F (e_1_2_7_41_1) 2018; 26
e_1_2_7_9_1
Uecker M (e_1_2_7_18_1) 2015; 23
e_1_2_7_8_1
e_1_2_7_7_1
Paszke A (e_1_2_7_15_1) 2019
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
Gräser M (e_1_2_7_44_1) 2019; 10
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_11_1
Borisch EA (e_1_2_7_46_1) 2019; 27
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Kukanov A (e_1_2_7_39_1) 2007; 11
Maier O (e_1_2_7_42_1) 2020
Ong F (e_1_2_7_19_1) 2019; 27
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
Block KT (e_1_2_7_45_1)
References_xml – volume: 2
  start-page: 323
  year: 2009
  end-page: 343
  article-title: The split Bregman method for L1‐regularized problems
  publication-title: SIAM J Imaging Sci
– volume: 46
  start-page: 638
  year: 2001
  end-page: 651
  article-title: Advances in sensitivity encoding with arbitrary k‐space trajectories
  publication-title: Magn Reson Med
– volume: 17
  start-page: 348
  year: 1978
  end-page: 375
  article-title: A theory of type polymorphism in programming
  publication-title: J Comput System Sci
– volume: 13
  start-page: 22
  year: 2011
  article-title: The NumPy array: a structure for efficient numerical computation
  publication-title: Comput Sci & Eng
– year: 2020
  article-title: CG‐SENSE revisited: results from the first ISMRM reproducibility challenge
  publication-title: Magn Reson Med
– volume: 10
  start-page: 1
  year: 2019
  end-page: 9
  article-title: Human‐sized magnetic particle imaging for brain applications
  publication-title: Nat Commun
– start-page: 7
  year: 2015
– start-page: 265
  year: 2016
  end-page: 283
– volume: 49
  year: 1952
  article-title: Methods of conjugate gradients for solving linear systems
  publication-title: J Res Nat Bureau Standards
– volume: 11
  year: 2007
  article-title: The foundations for scalable multi‐core software in intel threading building blocks
  publication-title: Inte Technol J
– volume: 64
  start-page: 457
  year: 2010
  end-page: 471
  article-title: SPIRiT: iterative self‐consistent parallel imaging reconstruction from arbitrary k‐space
  publication-title: Magn Reson Med
– volume: 73
  start-page: 655
  year: 2015
  end-page: 661
  article-title: Accelerating parameter mapping with a locally low rank constraint
  publication-title: Magn Reson Med
– volume: 77
  start-page: 411
  year: 2017
  end-page: 421
  article-title: ISMRM Raw data format: a proposed standard for MRI raw datasets
  publication-title: Magn Reson Med
– start-page: 75
  year: 2004
– start-page: 18
  year: 2009
  end-page: 25
– volume: 2
  start-page: 183
  year: 2009
  end-page: 202
  article-title: A fast iterative shrinkage‐thresholding algorithm for linear inverse problems
  publication-title: SIAM J Imaging Sci
– start-page: 743
  year: 2002
– volume: 58
  start-page: 1182
  year: 2007
  end-page: 1195
  article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging
  publication-title: Magn Reson Med
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
– volume: 3
  start-page: 1381
  year: 1998
  end-page: 1384
– volume: 27
  start-page: 4819
  year: 2019
  article-title: SigPy: a python package for high performance iterative reconstruction
  publication-title: Proc Int Soc Mag Reson Med
– volume: 26
  start-page: 1
  year: 2018
  article-title: Mridata.org: an open archive for sharing MRI raw data
  publication-title: Proc Int Soc Mag Reson Med
– volume: 26
  start-page: 374
  year: 2007
  end-page: 384
  article-title: Field inhomogeneity correction based on gridding reconstruction for magnetic resonance imaging
  publication-title: IEEE Trans Med Imaging
– volume: 33
  start-page: 668
  year: 2013
  end-page: 681
  article-title: Low‐rank modeling of local k‐space neighborhoods (LORAKS) for constrained MRI
  publication-title: IEEE Trans Med Imaging
– volume: 59
  start-page: 65
  year: 2017
  end-page: 98
  article-title: Julia: A fresh approach to numerical computing
  publication-title: SIAM Rev
– volume: 69
  start-page: 1768
  year: 2013
  end-page: 1776
  article-title: Gadgetron: an open source framework for medical image reconstruction
  publication-title: Magn Reson Med
– start-page: 920
  year: 2007
  end-page: 923
– volume: 1
  start-page: 127
  year: 2014
  end-page: 239
  article-title: Proximal algorithms
  publication-title: Foundations Trends® Optim
– volume: 78
  start-page: 494
  year: 2017
  end-page: 507
  article-title: Multi‐shot sensitivity‐encoded diffusion data recovery using structured low‐rank matrix completion (MUSSELS)
  publication-title: Magn Reson Med
– volume: 28
  start-page: 394
  year: 2009
  end-page: 404
  article-title: Iterative off‐resonance and signal decay correction for improved multi‐echo imaging in MRI
  publication-title: IEEE Trans Med Imaging
– volume: 37
  start-page: 55
  year: 1996
  end-page: 69
  article-title: Cilk: an efficient multithreaded runtime system
  publication-title: J Parallel Distributed Comput
– volume: 27
  start-page: 1
  year: 2019
  article-title: Automated reconstruction processing
  publication-title: Proc Intl Soc Mag Reson Med
– volume: 2007
  year: 2007
  article-title: A note on the iterative MRI reconstruction from nonuniform k‐space data
  publication-title: Int J Biomed Imaging
– volume: 62
  start-page: 2083
  year: 2012
  end-page: 2100
  article-title: Quantitative susceptibility mapping for investigating subtle susceptibility variations in the human brain
  publication-title: Neuroimage
– volume: 5
  start-page: 46
  year: 1998
  end-page: 55
  article-title: OpenMP: an industry standard API for shared‐memory programming
  publication-title: IEEE Comput Sci Eng
– start-page: 8026
  year: 2019
  end-page: 8037
  article-title: Pytorch: an imperative style, high‐performance deep learning library
  publication-title: Adv Neural Inf Process Syst
– volume: 2
  start-page: 480
  year: 2016
  end-page: 495
  article-title: A general framework for compressed sensing and parallel MRI using annihilating filter based low‐rank Hankel matrix
  publication-title: IEEE Trans Comput Imaging
– volume: 72
  start-page: 959
  year: 2014
  end-page: 970
  article-title: Calibrationless parallel imaging reconstruction based on structured low‐rank matrix completion
  publication-title: Magn Reson Med
– volume: 64
  start-page: 1114
  year: 2010
  end-page: 1120
  article-title: Compressed sensing reconstruction for magnetic resonance parameter mapping
  publication-title: Magn Reson Med
– volume: 68
  start-page: 1307
  year: 2008
  end-page: 1318
  article-title: Accelerating advanced MRI reconstructions on GPUs
  publication-title: J Parallel Distributed Comput
– volume: 28
  start-page: 1974
  year: 2009
  end-page: 1985
  article-title: Real‐time reconstruction of sensitivity encoded radial magnetic resonance imaging using a graphics processing unit
  publication-title: IEEE Trans Med Imaging
– volume: 41
  start-page: 179
  year: 1999
  end-page: 186
  article-title: Sampling density compensation in MRI: rationale and an iterative numerical solution
  publication-title: Magn Reson Med
– volume: 23
  start-page: 2486
  year: 2015
  article-title: Berkeley advanced reconstruction toolbox
  publication-title: Proc Int Soc Mag Reson Med
– volume: 71
  start-page: 990
  year: 2014
  end-page: 1001
  article-title: ESPIRiT–an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA
  publication-title: Magn Reson Med
– ident: e_1_2_7_32_1
  doi: 10.1137/080725891
– volume: 11
  year: 2007
  ident: e_1_2_7_39_1
  article-title: The foundations for scalable multi‐core software in intel threading building blocks
  publication-title: Inte Technol J
– ident: e_1_2_7_13_1
  doi: 10.1109/MCSE.2011.37
– ident: e_1_2_7_20_1
– ident: e_1_2_7_12_1
  doi: 10.1109/TMI.2009.2027118
– year: 2020
  ident: e_1_2_7_42_1
  article-title: CG‐SENSE revisited: results from the first ISMRM reproducibility challenge
  publication-title: Magn Reson Med
– ident: e_1_2_7_40_1
  doi: 10.1109/ICASSP.1998.681704
– ident: e_1_2_7_3_1
  doi: 10.1002/mrm.22428
– ident: e_1_2_7_28_1
  doi: 10.1002/mrm.24751
– volume: 10
  start-page: 1
  year: 2019
  ident: e_1_2_7_44_1
  article-title: Human‐sized magnetic particle imaging for brain applications
  publication-title: Nat Commun
– ident: e_1_2_7_16_1
  doi: 10.1137/141000671
– ident: e_1_2_7_8_1
  doi: 10.1002/mrm.25161
– volume: 27
  start-page: 4819
  year: 2019
  ident: e_1_2_7_19_1
  article-title: SigPy: a python package for high performance iterative reconstruction
  publication-title: Proc Int Soc Mag Reson Med
– ident: e_1_2_7_14_1
– ident: e_1_2_7_38_1
  doi: 10.1006/jpdc.1996.0107
– ident: e_1_2_7_22_1
  doi: 10.1145/2833157.2833162
– start-page: 8026
  year: 2019
  ident: e_1_2_7_15_1
  article-title: Pytorch: an imperative style, high‐performance deep learning library
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_7_36_1
  doi: 10.1002/mrm.26089
– ident: e_1_2_7_7_1
  doi: 10.1002/mrm.22483
– ident: e_1_2_7_29_1
  doi: 10.6028/jres.049.044
– ident: e_1_2_7_4_1
  doi: 10.1109/TCI.2016.2601296
– volume: 27
  start-page: 1
  year: 2019
  ident: e_1_2_7_46_1
  article-title: Automated reconstruction processing
  publication-title: Proc Intl Soc Mag Reson Med
– ident: e_1_2_7_37_1
  doi: 10.1109/99.660313
– ident: e_1_2_7_6_1
  doi: 10.1002/mrm.24997
– ident: e_1_2_7_11_1
  doi: 10.1016/j.jpdc.2008.05.013
– ident: e_1_2_7_21_1
  doi: 10.1016/0022-0000(78)90014-4
– ident: e_1_2_7_5_1
  doi: 10.1109/TMI.2013.2293974
– ident: e_1_2_7_25_1
  doi: 10.1109/TMI.2006.891502
– ident: e_1_2_7_27_1
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– ident: e_1_2_7_30_1
  doi: 10.1137/080716542
– ident: e_1_2_7_10_1
  doi: 10.1002/mrm.26382
– ident: e_1_2_7_17_1
  doi: 10.1002/mrm.24389
– ident: e_1_2_7_23_1
  doi: 10.1145/1565824.1565827
– ident: e_1_2_7_31_1
  doi: 10.1561/2400000003
– volume-title: Yarra—A Toolbox for Clinical MRI Research
  ident: e_1_2_7_45_1
– ident: e_1_2_7_24_1
  doi: 10.1109/ISBI.2007.357003
– ident: e_1_2_7_26_1
  doi: 10.1109/TMI.2008.2006526
– ident: e_1_2_7_35_1
  doi: 10.1002/(SICI)1522-2594(199901)41:1<179::AID-MRM25>3.0.CO;2-V
– ident: e_1_2_7_43_1
– volume: 23
  start-page: 2486
  year: 2015
  ident: e_1_2_7_18_1
  article-title: Berkeley advanced reconstruction toolbox
  publication-title: Proc Int Soc Mag Reson Med
– ident: e_1_2_7_9_1
  doi: 10.1016/j.neuroimage.2012.05.067
– ident: e_1_2_7_33_1
  doi: 10.1002/mrm.1241
– ident: e_1_2_7_34_1
  doi: 10.1155/2007/24727
– ident: e_1_2_7_2_1
  doi: 10.1002/mrm.21391
– volume: 26
  start-page: 1
  year: 2018
  ident: e_1_2_7_41_1
  article-title: Mridata.org: an open archive for sharing MRI raw data
  publication-title: Proc Int Soc Mag Reson Med
SSID ssj0009974
Score 2.4981012
Snippet Purpose The aim of this work is to develop a high‐performance, flexible, and easy‐to‐use MRI reconstruction framework using the scientific programming language...
Click here for author‐reader discussions
The aim of this work is to develop a high-performance, flexible, and easy-to-use MRI reconstruction framework using the scientific programming language Julia....
PurposeThe aim of this work is to develop a high‐performance, flexible, and easy‐to‐use MRI reconstruction framework using the scientific programming language...
The aim of this work is to develop a high-performance, flexible, and easy-to-use MRI reconstruction framework using the scientific programming language...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1633
SubjectTerms Accessibility
C++ (programming language)
Image processing
Image reconstruction
Information processing
Julia
Magnetic resonance imaging
numerical computing
open source
Packages
Programming languages
Signal processing
Title MRIReco.jl: An MRI reconstruction framework written in Julia
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28792
https://www.ncbi.nlm.nih.gov/pubmed/33817833
https://www.proquest.com/docview/2537418547
https://www.proquest.com/docview/2508892371
Volume 86
WOSCitedRecordID wos000636593500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB9Kq-KLH9Xa01qi-ODLtpeP3STqS1EPC95RDov3tuxOEjhpt3LX6r_vJPtRigqCL8uGzJKQ-cxm8huAV7TryfMCx5nz3mbKGZVVFjFD5Rx3hfboQio2oWczs1jYkw1429-FafEhhh9uUTOSvY4KXtXrw2vQ0PPV-QGF-5bs7xbnUkeRFurkGnHXthDMWkVDY1UPKzQWh8OnN53RbxHmzYA1eZzJ_f-a6wO41wWa7KiVjIew4ZttuDPtjtK34XbK_cT1I3g3nR_HXejBt7M37Khh1GRpnzxgy7LQp3Cxn6vlJYXZbNmweLW6egynk49f3n_KuqIKGcoYTaMaOx1yEbwKzgby7jX5dCy8tHklPHLFkXuPwfBgEJ2qXTBOUJ8N3pPD24HN5qLxu8DI2AWZa2ecRFW4otLO86quhc2NHXs9gtf96pbYIY7HwhdnZYuVLEpalzKtywheDqTfW5iNPxHt9SwqO01blyKXCYBH0XAvhm7SkXjwUTX-4irSxGQuITUfwZOWtcMoMkIUGilpsomDfx--nM6n6eXpv5M-g7siJsGkpLQ92CS--edwC39cLter_SSw9NQLsw9bH-aT08_U-no8-wVDYPBj
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB6M09elbR5N3SapWnLIZWOvpH2o-BKaGJt4TTE25LasRxI42Jtgu-3fr6R9GNMWAr3tohEjNJqHpNE3AOdm1xMEIXY8qZTwuIy5lwlED7mUvgwjhVK7YhPRaBTf3YnvDehWb2EKfIj6wM1qhrPXVsHtgXR7ixq6XC0vTbwvjAHe42YZBU3Yux73psMt6K4oUJgjbm2N4BWyUIe26867_uiPIHM3ZnVOp_fm_4b7Fl6XwSa5KlbHPjRUfgAvkvI6_QCeu_xPXB9CNxkP7E708n7xlVzlxPwSt1eu8WWJrtK4yK_VfGNCbTLPiX1enR3BtHcz-db3ysIKHjIbUSPvyEgHVCuupdDGw8-MX8dQMRFkVKHPffSVQh37OkaUfCZ1LKlpE1op4_TeQTN_yNV7IMbgaRZEMpYMeSjDLJLKz2YzKoJYdFTUgotqelMsUcdt8YtFWuAl09TMS-rmpQVfatLHAmrjb0QnlYzSUtvWKQ2YA-Hhht3nutnoib38yHL18MPS2IQuyiK_BceFbGsuzMIUxoyZwToR_pt9mowT9_Hh6aSf4GV_kgzT4WB0-xFeUZsU45LUTqBpZKhO4Rn-3MzXq7Ny_f4GHuHySQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9VhVW8MFYYFAbzEA-8pE1s58PTXiagooJWVQVS36L0fJaKtmxqB_z72M7HVDGkSbwl8kVn3fk-HJ9_B_DO7nriOMEw0EQqkDqTQaEQA5RaRzpJCbXxzSbS2SxbLtW8A2fNXZgKH6L94eYsw_trZ-B0rc3oFjX0cnM5tPm-sg74gYytj3W4znJ-C7mrKgzmVDpPo2SDKxTyUfvpbjT6K8XczVh9yBnv_99kn8DjOtVk59XaOIAOlX3oTevD9D7s-epP3D6Fs-li4vahwx8Xp-y8ZPaV-Z1yiy7LTFPExX5v1jc20WbrkrnL1cUz-D7-9O3D56BuqxCgcPk0ylCnJuaGpNHK2Pi-slEdExIqLjhhJCOMiNBkkckQtVxpk2lux5QhsiHvELrlVUkvgFl3Z0Sc6kwLlIlOilRTVKxWXMWZCikdwPtGvDnWmOOu9cVFXqEl89zKJfdyGcDblvS6Atq4i-io0VFe29o257HwEDzSsjtph62VuKOPoqSrn47GlXNxkUYDeF7ptuUiHEhhJoSdrFfhv9nn08XUP7y8P-kx9OYfx_nXyezLK3jEXUWMr1A7gq5VIb2Gh_jrZr3dvPGL9w9rpfAy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MRIReco.jl%3A+An+MRI+reconstruction+framework+written+in+Julia&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Knopp%2C+Tobias&rft.au=Grosser%2C+Mirco&rft.date=2021-09-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=86&rft.issue=3&rft.spage=1633&rft_id=info:doi/10.1002%2Fmrm.28792&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon