Lower Bounds on the Probability of Error for Classical and Classical-Quantum Channels
In this paper, lower bounds on error probability in coding for discrete classical and classical-quantum channels are studied. The contribution of the paper goes in two main directions: 1) extending classical bounds of Shannon to classical-quantum channels, and 2) proposing a new framework for lower...
Saved in:
| Published in: | IEEE transactions on information theory Vol. 59; no. 12; pp. 8027 - 8056 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York, NY
IEEE
01.12.2013
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9448, 1557-9654 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, lower bounds on error probability in coding for discrete classical and classical-quantum channels are studied. The contribution of the paper goes in two main directions: 1) extending classical bounds of Shannon to classical-quantum channels, and 2) proposing a new framework for lower bounding the probability of error of channels with a zero-error capacity in the low rate region. The relation between these two problems is revealed by showing that Lovász' bound on zero-error capacity emerges as a natural consequence of the sphere packing bound once we move to the more general context of classical-quantum channels. A variation of Lovász' bound is then derived to lower bound the probability of error in the low rate region by means of auxiliary channels. As a result of this study, connections between the Lovász theta function, the expurgated bound of Gallager, the cutoff rate of a classical channel, and the sphere packing bound for classical-quantum channels are established. |
|---|---|
| Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2013.2283794 |