Lower Bounds on the Probability of Error for Classical and Classical-Quantum Channels
In this paper, lower bounds on error probability in coding for discrete classical and classical-quantum channels are studied. The contribution of the paper goes in two main directions: 1) extending classical bounds of Shannon to classical-quantum channels, and 2) proposing a new framework for lower...
Uloženo v:
| Vydáno v: | IEEE transactions on information theory Ročník 59; číslo 12; s. 8027 - 8056 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
IEEE
01.12.2013
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9448, 1557-9654 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, lower bounds on error probability in coding for discrete classical and classical-quantum channels are studied. The contribution of the paper goes in two main directions: 1) extending classical bounds of Shannon to classical-quantum channels, and 2) proposing a new framework for lower bounding the probability of error of channels with a zero-error capacity in the low rate region. The relation between these two problems is revealed by showing that Lovász' bound on zero-error capacity emerges as a natural consequence of the sphere packing bound once we move to the more general context of classical-quantum channels. A variation of Lovász' bound is then derived to lower bound the probability of error in the low rate region by means of auxiliary channels. As a result of this study, connections between the Lovász theta function, the expurgated bound of Gallager, the cutoff rate of a classical channel, and the sphere packing bound for classical-quantum channels are established. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2013.2283794 |