Quantum Computation as Gravity

We formulate Nielsen's geometric approach to circuit complexity in the context of two-dimensional conformal field theories, where series of conformal transformations are interpreted as "unitary circuits" built from energy-momentum tensor gates. We show that the complexity functional i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters Jg. 122; H. 23; S. 231302
Hauptverfasser: Caputa, Paweł, Magan, Javier M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States American Physical Society 14.06.2019
Schlagworte:
ISSN:0031-9007, 1079-7114, 1079-7114
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We formulate Nielsen's geometric approach to circuit complexity in the context of two-dimensional conformal field theories, where series of conformal transformations are interpreted as "unitary circuits" built from energy-momentum tensor gates. We show that the complexity functional in this setup can be written as the Polyakov action of two-dimensional gravity or, equivalently, as the geometric action on the coadjoint orbits of the Virasoro group. This way, we argue that gravity sets the rules for optimal quantum computation in conformal field theories.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0031-9007
1079-7114
1079-7114
DOI:10.1103/PhysRevLett.122.231302