Quantum Computation as Gravity

We formulate Nielsen's geometric approach to circuit complexity in the context of two-dimensional conformal field theories, where series of conformal transformations are interpreted as "unitary circuits" built from energy-momentum tensor gates. We show that the complexity functional i...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters Vol. 122; no. 23; p. 231302
Main Authors: Caputa, Paweł, Magan, Javier M.
Format: Journal Article
Language:English
Published: United States American Physical Society 14.06.2019
Subjects:
ISSN:0031-9007, 1079-7114, 1079-7114
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We formulate Nielsen's geometric approach to circuit complexity in the context of two-dimensional conformal field theories, where series of conformal transformations are interpreted as "unitary circuits" built from energy-momentum tensor gates. We show that the complexity functional in this setup can be written as the Polyakov action of two-dimensional gravity or, equivalently, as the geometric action on the coadjoint orbits of the Virasoro group. This way, we argue that gravity sets the rules for optimal quantum computation in conformal field theories.
AbstractList We formulate Nielsen's geometric approach to circuit complexity in the context of two-dimensional conformal field theories, where series of conformal transformations are interpreted as "unitary circuits" built from energy-momentum tensor gates. We show that the complexity functional in this setup can be written as the Polyakov action of two-dimensional gravity or, equivalently, as the geometric action on the coadjoint orbits of the Virasoro group. This way, we argue that gravity sets the rules for optimal quantum computation in conformal field theories.We formulate Nielsen's geometric approach to circuit complexity in the context of two-dimensional conformal field theories, where series of conformal transformations are interpreted as "unitary circuits" built from energy-momentum tensor gates. We show that the complexity functional in this setup can be written as the Polyakov action of two-dimensional gravity or, equivalently, as the geometric action on the coadjoint orbits of the Virasoro group. This way, we argue that gravity sets the rules for optimal quantum computation in conformal field theories.
We formulate Nielsen's geometric approach to circuit complexity in the context of two-dimensional conformal field theories, where series of conformal transformations are interpreted as "unitary circuits" built from energy-momentum tensor gates. We show that the complexity functional in this setup can be written as the Polyakov action of two-dimensional gravity or, equivalently, as the geometric action on the coadjoint orbits of the Virasoro group. This way, we argue that gravity sets the rules for optimal quantum computation in conformal field theories.
ArticleNumber 231302
Author Magan, Javier M.
Caputa, Paweł
Author_xml – sequence: 1
  givenname: Paweł
  surname: Caputa
  fullname: Caputa, Paweł
– sequence: 2
  givenname: Javier M.
  surname: Magan
  fullname: Magan, Javier M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31298880$$D View this record in MEDLINE/PubMed
BookMark eNqFkF1LwzAUhoNM3If-hTHwxpvOc5K2ScAbGTqFgR_odUjTFDvWdjbpYP_eSDeQ3Xh14PC85-MZk0Hd1JaQKcIcEdjt69fevdvdyno_R0rnlCEDekZGCFxGHDEekBEAw0gC8CEZO7cGAKSpuCBDhlQKIWBEpm-drn1XzRZNte289mVTz7SbLVu9K_3-kpwXeuPs1aFOyOfjw8fiKVq9LJ8X96vIMMF9lCdS5BxNgVoKgzKnYLKkiFMjOdVUaJAsA0aFiTF0reaYGB1zJiDTRaLZhNz0c7dt891Z51VVOmM3G13bpnOK0oRzFILzgF6foOuma-twXaBiiRIwZYGaHqguq2yutm1Z6Xavjp8H4K4HTNs419pCmbJ_37e63CgE9Sta_RGtgmjViw7x9CR-3PBP8Adx04M4
CitedBy_id crossref_primary_10_21468_SciPostPhys_19_1_007
crossref_primary_10_1007_JHEP12_2021_188
crossref_primary_10_1007_JHEP08_2021_135
crossref_primary_10_1007_JHEP02_2020_052
crossref_primary_10_1007_JHEP04_2025_059
crossref_primary_10_1007_JHEP05_2024_264
crossref_primary_10_1140_epjc_s10052_023_11212_8
crossref_primary_10_1007_JHEP03_2025_127
crossref_primary_10_1140_epjc_s10052_022_10037_1
crossref_primary_10_1007_JHEP02_2020_051
crossref_primary_10_1103_PhysRevResearch_2_033273
crossref_primary_10_1007_JHEP11_2020_003
crossref_primary_10_1007_JHEP12_2022_065
crossref_primary_10_1093_ptep_ptab098
crossref_primary_10_1007_JHEP02_2020_125
crossref_primary_10_1007_JHEP12_2021_030
crossref_primary_10_1007_JHEP09_2023_087
crossref_primary_10_1007_JHEP09_2023_167
crossref_primary_10_1007_JHEP07_2024_125
crossref_primary_10_1007_JHEP01_2022_016
crossref_primary_10_1007_JHEP03_2025_177
crossref_primary_10_1007_JHEP08_2021_045
crossref_primary_10_1007_JHEP05_2021_022
crossref_primary_10_1007_JHEP02_2021_187
crossref_primary_10_1140_epjc_s10052_022_10151_0
crossref_primary_10_1007_JHEP01_2020_066
crossref_primary_10_1007_JHEP04_2021_250
crossref_primary_10_1007_JHEP07_2025_203
crossref_primary_10_1103_PhysRevResearch_2_043438
crossref_primary_10_1007_JHEP09_2022_002
crossref_primary_10_1007_JHEP05_2022_131
crossref_primary_10_1007_JHEP11_2022_095
crossref_primary_10_1007_JHEP05_2025_154
crossref_primary_10_1007_JHEP08_2022_235
crossref_primary_10_1007_JHEP10_2023_156
crossref_primary_10_1007_JHEP10_2023_157
crossref_primary_10_1007_JHEP04_2022_081
crossref_primary_10_1007_JHEP12_2020_101
crossref_primary_10_1103_pfyl_hwf2
crossref_primary_10_1007_JHEP09_2021_200
crossref_primary_10_1007_JHEP01_2021_027
crossref_primary_10_3390_universe10090358
crossref_primary_10_1007_JHEP08_2021_156
crossref_primary_10_1007_JHEP03_2024_062
crossref_primary_10_1088_1475_7516_2025_07_036
crossref_primary_10_1007_JHEP01_2020_134
crossref_primary_10_1007_s00220_023_04855_x
crossref_primary_10_1007_JHEP07_2019_045
crossref_primary_10_1016_j_physletb_2023_137691
crossref_primary_10_1007_JHEP06_2024_066
crossref_primary_10_1007_JHEP07_2019_163
crossref_primary_10_1007_JHEP06_2024_184
crossref_primary_10_3390_universe8010040
crossref_primary_10_1007_JHEP08_2022_162
crossref_primary_10_1007_JHEP10_2024_107
crossref_primary_10_1007_JHEP11_2019_132
crossref_primary_10_1103_PhysRevResearch_2_013323
crossref_primary_10_1007_JHEP07_2021_016
crossref_primary_10_1103_PhysRevResearch_6_L042001
crossref_primary_10_1007_JHEP03_2024_179
crossref_primary_10_1007_JHEP06_2021_056
crossref_primary_10_1088_1361_648X_ad1a7b
crossref_primary_10_1007_JHEP10_2024_024
crossref_primary_10_1007_JHEP02_2022_118
crossref_primary_10_1007_JHEP07_2022_073
crossref_primary_10_1007_JHEP01_2022_150
crossref_primary_10_1093_ptep_ptac081
crossref_primary_10_1007_JHEP12_2020_091
crossref_primary_10_1007_JHEP01_2021_092
crossref_primary_10_3390_sym15010031
crossref_primary_10_1103_PhysRevResearch_4_013041
crossref_primary_10_1103_PhysRevX_14_041068
crossref_primary_10_1007_JHEP07_2021_011
crossref_primary_10_1007_JHEP02_2022_093
crossref_primary_10_1007_JHEP05_2024_058
crossref_primary_10_3390_sym13071301
crossref_primary_10_1007_JHEP08_2023_176
crossref_primary_10_1007_JHEP07_2021_212
crossref_primary_10_1007_JHEP05_2024_337
crossref_primary_10_1002_prop_202200102
crossref_primary_10_1140_epjc_s10052_022_10377_y
crossref_primary_10_1007_JHEP08_2020_102
crossref_primary_10_1016_j_physletb_2021_136731
crossref_primary_10_1007_JHEP01_2023_154
crossref_primary_10_1007_JHEP02_2020_014
crossref_primary_10_1007_JHEP11_2021_037
crossref_primary_10_1007_JHEP03_2022_179
crossref_primary_10_1007_JHEP08_2024_241
crossref_primary_10_1007_JHEP10_2021_028
Cites_doi 10.1103/PhysRevD.98.126001
10.1007/BF02097053
10.1007/s002200050156
10.1007/JHEP08(2018)012
10.1007/JHEP11(2017)097
10.1007/JHEP07(2018)139
10.1007/JHEP01(2017)062
10.1103/PhysRevD.41.724
10.1088/1361-6382/aa9806
10.1103/PhysRevD.96.086002
10.1088/0264-9381/12/12/012
10.1007/JHEP10(2017)114
10.1023/A:1026654312961
10.1007/BF01645091
10.1103/RevModPhys.54.407
10.1016/S0370-2693(89)80025-5
10.4310/ATMP.1998.v2.n2.a1
10.1016/j.physletb.2016.02.050
10.1103/PhysRevD.90.126007
10.1103/PhysRevD.94.084046
10.1002/prop.201500093
10.1142/S0217732387001130
10.1103/PhysRevLett.120.121602
10.1007/JHEP05(2019)003
10.1016/j.physletb.2018.10.071
10.1007/JHEP02(2018)082
10.1103/PhysRevD.97.066004
10.1007/JHEP11(2017)046
10.1103/PhysRevD.97.086015
10.1103/PhysRevD.92.126009
10.1103/PhysRevLett.119.071602
10.1103/PhysRevD.98.046002
10.1007/BF01218287
10.1007/978-1-4612-2256-9
10.1126/science.1121541
10.1063/1.59661
10.1103/PhysRevLett.120.031601
10.1006/aphy.2000.5994
10.1007/JHEP10(2017)107
10.1103/PhysRevD.93.086006
10.1016/0550-3213(89)90130-2
10.1007/JHEP09(2018)043
10.1103/PhysRevLett.115.261602
10.1038/35023282
10.1007/JHEP10(2017)008
10.1103/PhysRevLett.116.191301
10.1007/JHEP05(2018)036
10.1002/prop.201800034
10.1142/S0129055X18400019
10.1016/0550-3213(90)90534-K
10.1007/BF02099396
10.1016/0550-3213(88)90143-5
10.1103/PhysRevD.96.126001
ContentType Journal Article
Copyright Copyright American Physical Society Jun 14, 2019
Copyright_xml – notice: Copyright American Physical Society Jun 14, 2019
DBID AAYXX
CITATION
NPM
7U5
8FD
H8D
L7M
7X8
DOI 10.1103/PhysRevLett.122.231302
DatabaseName CrossRef
PubMed
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 31298880
10_1103_PhysRevLett_122_231302
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
186
2-P
29O
3MX
3O-
41~
5VS
6TJ
85S
8NH
8WZ
9M8
A6W
AAYJJ
AAYXX
ABSSX
ABUFD
ACBEA
ACGFO
ACKIV
ACNCT
ADXHL
AECSF
AENEX
AEQTI
AETEA
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CITATION
CS3
D0L
DU5
EBS
EJD
ER.
F5P
H~9
MVM
N9A
NEJ
NHB
NPBMV
OHT
OK1
P0-
P2P
RNS
ROL
S7W
SJN
T9H
TN5
UBC
UBE
VOH
WH7
XOL
XSW
YNT
YYP
ZCG
ZPR
ZY4
~02
NPM
UCJ
VQA
7U5
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c387t-d598d71cf1a98c19d20cb5f46c972a28a093b0328c41f46ea715ca47380baf5a3
IEDL.DBID 3MX
ISICitedReferencesCount 142
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000471988500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-9007
1079-7114
IngestDate Thu Jul 10 23:13:45 EDT 2025
Mon Jun 30 04:17:06 EDT 2025
Thu Jan 02 23:00:01 EST 2025
Sat Nov 29 05:55:25 EST 2025
Tue Nov 18 22:11:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-d598d71cf1a98c19d20cb5f46c972a28a093b0328c41f46ea715ca47380baf5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://link.aps.org/pdf/10.1103/PhysRevLett.122.231302
PMID 31298880
PQID 2249190163
PQPubID 2048222
ParticipantIDs proquest_miscellaneous_2257718877
proquest_journals_2249190163
pubmed_primary_31298880
crossref_citationtrail_10_1103_PhysRevLett_122_231302
crossref_primary_10_1103_PhysRevLett_122_231302
PublicationCentury 2000
PublicationDate 2019-Jun-14
PublicationDateYYYYMMDD 2019-06-14
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-Jun-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: College Park
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2019
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevLett.122.231302Cc2R1
PhysRevLett.122.231302Cc6R1
PhysRevLett.122.231302Cc4R2
PhysRevLett.122.231302Cc4R1
PhysRevLett.122.231302Cc19R1
J. R. Klauder (PhysRevLett.122.231302Cc50R1) 1968
PhysRevLett.122.231302Cc15R1
PhysRevLett.122.231302Cc15R2
PhysRevLett.122.231302Cc17R1
PhysRevLett.122.231302Cc38R1
PhysRevLett.122.231302Cc59R1
PhysRevLett.122.231302Cc11R1
PhysRevLett.122.231302Cc32R1
PhysRevLett.122.231302Cc57R1
PhysRevLett.122.231302Cc8R1
PhysRevLett.122.231302Cc13R1
P. Di Francesco (PhysRevLett.122.231302Cc31R1) 1997
PhysRevLett.122.231302Cc55R1
PhysRevLett.122.231302Cc53R1
PhysRevLett.122.231302Cc51R1
PhysRevLett.122.231302Cc26R1
PhysRevLett.122.231302Cc49R1
PhysRevLett.122.231302Cc28R1
PhysRevLett.122.231302Cc47R1
PhysRevLett.122.231302Cc22R1
PhysRevLett.122.231302Cc45R1
PhysRevLett.122.231302Cc24R1
PhysRevLett.122.231302Cc22R2
PhysRevLett.122.231302Cc20R1
PhysRevLett.122.231302Cc41R1
PhysRevLett.122.231302Cc5R1
PhysRevLett.122.231302Cc18R1
A. A. Kirillov (PhysRevLett.122.231302Cc30R1) 2004
PhysRevLett.122.231302Cc14R1
PhysRevLett.122.231302Cc37R1
PhysRevLett.122.231302Cc16R1
PhysRevLett.122.231302Cc39R1
PhysRevLett.122.231302Cc58R1
PhysRevLett.122.231302Cc10R1
PhysRevLett.122.231302Cc56R1
PhysRevLett.122.231302Cc12R1
PhysRevLett.122.231302Cc35R1
PhysRevLett.122.231302Cc54R1
PhysRevLett.122.231302Cc7R1
PhysRevLett.122.231302Cc52R1
PhysRevLett.122.231302Cc29R2
PhysRevLett.122.231302Cc29R1
PhysRevLett.122.231302Cc25R1
PhysRevLett.122.231302Cc27R1
PhysRevLett.122.231302Cc48R1
A. Marshakov (PhysRevLett.122.231302Cc55R2) 1990; 70
PhysRevLett.122.231302Cc21R1
PhysRevLett.122.231302Cc46R1
PhysRevLett.122.231302Cc23R1
PhysRevLett.122.231302Cc40R1
PhysRevLett.122.231302Cc42R1
References_xml – ident: PhysRevLett.122.231302Cc21R1
  doi: 10.1103/PhysRevD.98.126001
– ident: PhysRevLett.122.231302Cc39R1
  doi: 10.1007/BF02097053
– ident: PhysRevLett.122.231302Cc37R1
  doi: 10.1007/s002200050156
– ident: PhysRevLett.122.231302Cc23R1
  doi: 10.1007/JHEP08(2018)012
– ident: PhysRevLett.122.231302Cc15R2
  doi: 10.1007/JHEP11(2017)097
– ident: PhysRevLett.122.231302Cc25R1
  doi: 10.1007/JHEP07(2018)139
– ident: PhysRevLett.122.231302Cc13R1
  doi: 10.1007/JHEP01(2017)062
– ident: PhysRevLett.122.231302Cc38R1
  doi: 10.1103/PhysRevD.41.724
– ident: PhysRevLett.122.231302Cc40R1
  doi: 10.1088/1361-6382/aa9806
– ident: PhysRevLett.122.231302Cc53R1
  doi: 10.1103/PhysRevD.96.086002
– ident: PhysRevLett.122.231302Cc42R1
  doi: 10.1088/0264-9381/12/12/012
– ident: PhysRevLett.122.231302Cc49R1
  doi: 10.1007/JHEP10(2017)114
– ident: PhysRevLett.122.231302Cc4R2
  doi: 10.1023/A:1026654312961
– ident: PhysRevLett.122.231302Cc51R1
  doi: 10.1007/BF01645091
– ident: PhysRevLett.122.231302Cc52R1
  doi: 10.1103/RevModPhys.54.407
– ident: PhysRevLett.122.231302Cc57R1
  doi: 10.1016/S0370-2693(89)80025-5
– ident: PhysRevLett.122.231302Cc4R1
  doi: 10.4310/ATMP.1998.v2.n2.a1
– ident: PhysRevLett.122.231302Cc45R1
  doi: 10.1016/j.physletb.2016.02.050
– ident: PhysRevLett.122.231302Cc6R1
  doi: 10.1103/PhysRevD.90.126007
– ident: PhysRevLett.122.231302Cc14R1
  doi: 10.1103/PhysRevD.94.084046
– volume-title: Fundamentals of Quantum Optics
  year: 1968
  ident: PhysRevLett.122.231302Cc50R1
– ident: PhysRevLett.122.231302Cc5R1
  doi: 10.1002/prop.201500093
– ident: PhysRevLett.122.231302Cc28R1
  doi: 10.1142/S0217732387001130
– ident: PhysRevLett.122.231302Cc18R1
  doi: 10.1103/PhysRevLett.120.121602
– ident: PhysRevLett.122.231302Cc26R1
  doi: 10.1007/JHEP05(2019)003
– ident: PhysRevLett.122.231302Cc54R1
  doi: 10.1016/j.physletb.2018.10.071
– ident: PhysRevLett.122.231302Cc20R1
  doi: 10.1007/JHEP02(2018)082
– ident: PhysRevLett.122.231302Cc19R1
  doi: 10.1103/PhysRevD.97.066004
– ident: PhysRevLett.122.231302Cc47R1
  doi: 10.1007/JHEP11(2017)046
– ident: PhysRevLett.122.231302Cc10R1
  doi: 10.1103/PhysRevD.97.086015
– ident: PhysRevLett.122.231302Cc12R1
  doi: 10.1103/PhysRevD.92.126009
– ident: PhysRevLett.122.231302Cc15R1
  doi: 10.1103/PhysRevLett.119.071602
– ident: PhysRevLett.122.231302Cc22R2
  doi: 10.1103/PhysRevD.98.046002
– ident: PhysRevLett.122.231302Cc32R1
  doi: 10.1007/BF01218287
– volume: 70
  start-page: 403
  issn: 0038-5646
  year: 1990
  ident: PhysRevLett.122.231302Cc55R2
  publication-title: Sov. Phys. JETP
– volume-title: Conformal Field Theory
  year: 1997
  ident: PhysRevLett.122.231302Cc31R1
  doi: 10.1007/978-1-4612-2256-9
– ident: PhysRevLett.122.231302Cc2R1
  doi: 10.1126/science.1121541
– ident: PhysRevLett.122.231302Cc59R1
  doi: 10.1063/1.59661
– ident: PhysRevLett.122.231302Cc16R1
  doi: 10.1103/PhysRevLett.120.031601
– ident: PhysRevLett.122.231302Cc41R1
  doi: 10.1006/aphy.2000.5994
– ident: PhysRevLett.122.231302Cc17R1
  doi: 10.1007/JHEP10(2017)107
– ident: PhysRevLett.122.231302Cc8R1
  doi: 10.1103/PhysRevD.93.086006
– ident: PhysRevLett.122.231302Cc29R1
  doi: 10.1016/0550-3213(89)90130-2
– ident: PhysRevLett.122.231302Cc27R1
  doi: 10.1007/JHEP09(2018)043
– ident: PhysRevLett.122.231302Cc11R1
  doi: 10.1103/PhysRevLett.115.261602
– ident: PhysRevLett.122.231302Cc35R1
  doi: 10.1038/35023282
– ident: PhysRevLett.122.231302Cc46R1
  doi: 10.1007/JHEP10(2017)008
– ident: PhysRevLett.122.231302Cc7R1
  doi: 10.1103/PhysRevLett.116.191301
– ident: PhysRevLett.122.231302Cc48R1
  doi: 10.1007/JHEP05(2018)036
– ident: PhysRevLett.122.231302Cc24R1
  doi: 10.1002/prop.201800034
– ident: PhysRevLett.122.231302Cc29R2
  doi: 10.1142/S0129055X18400019
– ident: PhysRevLett.122.231302Cc55R1
  doi: 10.1016/0550-3213(90)90534-K
– ident: PhysRevLett.122.231302Cc56R1
  doi: 10.1007/BF02099396
– ident: PhysRevLett.122.231302Cc58R1
  doi: 10.1016/0550-3213(88)90143-5
– ident: PhysRevLett.122.231302Cc22R1
  doi: 10.1103/PhysRevD.96.126001
– volume-title: Lectures on the Orbit Method, Graduate Studies in Mathematics
  year: 2004
  ident: PhysRevLett.122.231302Cc30R1
SSID ssj0001268
Score 2.6522777
Snippet We formulate Nielsen's geometric approach to circuit complexity in the context of two-dimensional conformal field theories, where series of conformal...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 231302
SubjectTerms Complexity
Computation
Conformal mapping
Gates (circuits)
Gravitation
Tensors
Title Quantum Computation as Gravity
URI https://www.ncbi.nlm.nih.gov/pubmed/31298880
https://www.proquest.com/docview/2249190163
https://www.proquest.com/docview/2257718877
Volume 122
WOSCitedRecordID wos000471988500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABR
  databaseName: American Physical Society Journals
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: 3MX
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://journals.aps.org/
  providerName: American Physical Society
– providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: ER.
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-GKPji90d1jgq-ZstH26SPIk4fdKgo9K0kaQqCdrKu-_tN2q4oOGQvfWibNneXXH5HLr8DuLIBV8xUoFBuowUUCE2QsigCUWZYJDKscl3zzD7wyUQkSfzUA_z3Dj7BbOQyIV_Mwp1uGRJKhxaQsIY9UgSuZAF7TDrXS2jUuF7m8g4wb48Er_7M79VoBcSsl5rx7vqd3IOdFlb618042IeeKQ5gq07v1OUhDJ4rq8Hq02-KONTW8GXp382kqx1xBG_j29ebe9RWRkCaCT5HWRiLjBOdExlb9cYZxVqFeRDpmFNJhXQGcEx5OiD2rpGchFoGnAmsZB5KdgwbxbQwp-Dj0FhnSaXWOQ0kJUoZphnGilLMpcEehEsNpbqlDXfVKz7SOnzALP0he2plTxvZPRh17b4a4ox_W_SXBkjbiVSmFmHEDrNEzIPL7rGdAm5fQxZmWrl3Qm6XWMG5ByeN4bpfMotnbJCPz9buzjlsW3DkKBoQCfqwMZ9V5gI29WL-Xs4G9bizV56Ib-zu07I
linkProvider American Physical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Computation+as+Gravity&rft.jtitle=Physical+review+letters&rft.au=Caputa%2C+Pawe%C5%82&rft.au=Magan%2C+Javier+M&rft.date=2019-06-14&rft.eissn=1079-7114&rft.volume=122&rft.issue=23&rft.spage=231302&rft_id=info:doi/10.1103%2FPhysRevLett.122.231302&rft_id=info%3Apmid%2F31298880&rft.externalDocID=31298880
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon