Quantum Computation as Gravity
We formulate Nielsen's geometric approach to circuit complexity in the context of two-dimensional conformal field theories, where series of conformal transformations are interpreted as "unitary circuits" built from energy-momentum tensor gates. We show that the complexity functional i...
Saved in:
| Published in: | Physical review letters Vol. 122; no. 23; p. 231302 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
American Physical Society
14.06.2019
|
| Subjects: | |
| ISSN: | 0031-9007, 1079-7114, 1079-7114 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We formulate Nielsen's geometric approach to circuit complexity in the context of two-dimensional conformal field theories, where series of conformal transformations are interpreted as "unitary circuits" built from energy-momentum tensor gates. We show that the complexity functional in this setup can be written as the Polyakov action of two-dimensional gravity or, equivalently, as the geometric action on the coadjoint orbits of the Virasoro group. This way, we argue that gravity sets the rules for optimal quantum computation in conformal field theories. |
|---|---|
| AbstractList | We formulate Nielsen's geometric approach to circuit complexity in the context of two-dimensional conformal field theories, where series of conformal transformations are interpreted as "unitary circuits" built from energy-momentum tensor gates. We show that the complexity functional in this setup can be written as the Polyakov action of two-dimensional gravity or, equivalently, as the geometric action on the coadjoint orbits of the Virasoro group. This way, we argue that gravity sets the rules for optimal quantum computation in conformal field theories. We formulate Nielsen's geometric approach to circuit complexity in the context of two-dimensional conformal field theories, where series of conformal transformations are interpreted as "unitary circuits" built from energy-momentum tensor gates. We show that the complexity functional in this setup can be written as the Polyakov action of two-dimensional gravity or, equivalently, as the geometric action on the coadjoint orbits of the Virasoro group. This way, we argue that gravity sets the rules for optimal quantum computation in conformal field theories.We formulate Nielsen's geometric approach to circuit complexity in the context of two-dimensional conformal field theories, where series of conformal transformations are interpreted as "unitary circuits" built from energy-momentum tensor gates. We show that the complexity functional in this setup can be written as the Polyakov action of two-dimensional gravity or, equivalently, as the geometric action on the coadjoint orbits of the Virasoro group. This way, we argue that gravity sets the rules for optimal quantum computation in conformal field theories. |
| ArticleNumber | 231302 |
| Author | Magan, Javier M. Caputa, Paweł |
| Author_xml | – sequence: 1 givenname: Paweł surname: Caputa fullname: Caputa, Paweł – sequence: 2 givenname: Javier M. surname: Magan fullname: Magan, Javier M. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31298880$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkF1LwzAUhoNM3If-hTHwxpvOc5K2ScAbGTqFgR_odUjTFDvWdjbpYP_eSDeQ3Xh14PC85-MZk0Hd1JaQKcIcEdjt69fevdvdyno_R0rnlCEDekZGCFxGHDEekBEAw0gC8CEZO7cGAKSpuCBDhlQKIWBEpm-drn1XzRZNte289mVTz7SbLVu9K_3-kpwXeuPs1aFOyOfjw8fiKVq9LJ8X96vIMMF9lCdS5BxNgVoKgzKnYLKkiFMjOdVUaJAsA0aFiTF0reaYGB1zJiDTRaLZhNz0c7dt891Z51VVOmM3G13bpnOK0oRzFILzgF6foOuma-twXaBiiRIwZYGaHqguq2yutm1Z6Xavjp8H4K4HTNs419pCmbJ_37e63CgE9Sta_RGtgmjViw7x9CR-3PBP8Adx04M4 |
| CitedBy_id | crossref_primary_10_21468_SciPostPhys_19_1_007 crossref_primary_10_1007_JHEP12_2021_188 crossref_primary_10_1007_JHEP08_2021_135 crossref_primary_10_1007_JHEP02_2020_052 crossref_primary_10_1007_JHEP04_2025_059 crossref_primary_10_1007_JHEP05_2024_264 crossref_primary_10_1140_epjc_s10052_023_11212_8 crossref_primary_10_1007_JHEP03_2025_127 crossref_primary_10_1140_epjc_s10052_022_10037_1 crossref_primary_10_1007_JHEP02_2020_051 crossref_primary_10_1103_PhysRevResearch_2_033273 crossref_primary_10_1007_JHEP11_2020_003 crossref_primary_10_1007_JHEP12_2022_065 crossref_primary_10_1093_ptep_ptab098 crossref_primary_10_1007_JHEP02_2020_125 crossref_primary_10_1007_JHEP12_2021_030 crossref_primary_10_1007_JHEP09_2023_087 crossref_primary_10_1007_JHEP09_2023_167 crossref_primary_10_1007_JHEP07_2024_125 crossref_primary_10_1007_JHEP01_2022_016 crossref_primary_10_1007_JHEP03_2025_177 crossref_primary_10_1007_JHEP08_2021_045 crossref_primary_10_1007_JHEP05_2021_022 crossref_primary_10_1007_JHEP02_2021_187 crossref_primary_10_1140_epjc_s10052_022_10151_0 crossref_primary_10_1007_JHEP01_2020_066 crossref_primary_10_1007_JHEP04_2021_250 crossref_primary_10_1007_JHEP07_2025_203 crossref_primary_10_1103_PhysRevResearch_2_043438 crossref_primary_10_1007_JHEP09_2022_002 crossref_primary_10_1007_JHEP05_2022_131 crossref_primary_10_1007_JHEP11_2022_095 crossref_primary_10_1007_JHEP05_2025_154 crossref_primary_10_1007_JHEP08_2022_235 crossref_primary_10_1007_JHEP10_2023_156 crossref_primary_10_1007_JHEP10_2023_157 crossref_primary_10_1007_JHEP04_2022_081 crossref_primary_10_1007_JHEP12_2020_101 crossref_primary_10_1103_pfyl_hwf2 crossref_primary_10_1007_JHEP09_2021_200 crossref_primary_10_1007_JHEP01_2021_027 crossref_primary_10_3390_universe10090358 crossref_primary_10_1007_JHEP08_2021_156 crossref_primary_10_1007_JHEP03_2024_062 crossref_primary_10_1088_1475_7516_2025_07_036 crossref_primary_10_1007_JHEP01_2020_134 crossref_primary_10_1007_s00220_023_04855_x crossref_primary_10_1007_JHEP07_2019_045 crossref_primary_10_1016_j_physletb_2023_137691 crossref_primary_10_1007_JHEP06_2024_066 crossref_primary_10_1007_JHEP07_2019_163 crossref_primary_10_1007_JHEP06_2024_184 crossref_primary_10_3390_universe8010040 crossref_primary_10_1007_JHEP08_2022_162 crossref_primary_10_1007_JHEP10_2024_107 crossref_primary_10_1007_JHEP11_2019_132 crossref_primary_10_1103_PhysRevResearch_2_013323 crossref_primary_10_1007_JHEP07_2021_016 crossref_primary_10_1103_PhysRevResearch_6_L042001 crossref_primary_10_1007_JHEP03_2024_179 crossref_primary_10_1007_JHEP06_2021_056 crossref_primary_10_1088_1361_648X_ad1a7b crossref_primary_10_1007_JHEP10_2024_024 crossref_primary_10_1007_JHEP02_2022_118 crossref_primary_10_1007_JHEP07_2022_073 crossref_primary_10_1007_JHEP01_2022_150 crossref_primary_10_1093_ptep_ptac081 crossref_primary_10_1007_JHEP12_2020_091 crossref_primary_10_1007_JHEP01_2021_092 crossref_primary_10_3390_sym15010031 crossref_primary_10_1103_PhysRevResearch_4_013041 crossref_primary_10_1103_PhysRevX_14_041068 crossref_primary_10_1007_JHEP07_2021_011 crossref_primary_10_1007_JHEP02_2022_093 crossref_primary_10_1007_JHEP05_2024_058 crossref_primary_10_3390_sym13071301 crossref_primary_10_1007_JHEP08_2023_176 crossref_primary_10_1007_JHEP07_2021_212 crossref_primary_10_1007_JHEP05_2024_337 crossref_primary_10_1002_prop_202200102 crossref_primary_10_1140_epjc_s10052_022_10377_y crossref_primary_10_1007_JHEP08_2020_102 crossref_primary_10_1016_j_physletb_2021_136731 crossref_primary_10_1007_JHEP01_2023_154 crossref_primary_10_1007_JHEP02_2020_014 crossref_primary_10_1007_JHEP11_2021_037 crossref_primary_10_1007_JHEP03_2022_179 crossref_primary_10_1007_JHEP08_2024_241 crossref_primary_10_1007_JHEP10_2021_028 |
| Cites_doi | 10.1103/PhysRevD.98.126001 10.1007/BF02097053 10.1007/s002200050156 10.1007/JHEP08(2018)012 10.1007/JHEP11(2017)097 10.1007/JHEP07(2018)139 10.1007/JHEP01(2017)062 10.1103/PhysRevD.41.724 10.1088/1361-6382/aa9806 10.1103/PhysRevD.96.086002 10.1088/0264-9381/12/12/012 10.1007/JHEP10(2017)114 10.1023/A:1026654312961 10.1007/BF01645091 10.1103/RevModPhys.54.407 10.1016/S0370-2693(89)80025-5 10.4310/ATMP.1998.v2.n2.a1 10.1016/j.physletb.2016.02.050 10.1103/PhysRevD.90.126007 10.1103/PhysRevD.94.084046 10.1002/prop.201500093 10.1142/S0217732387001130 10.1103/PhysRevLett.120.121602 10.1007/JHEP05(2019)003 10.1016/j.physletb.2018.10.071 10.1007/JHEP02(2018)082 10.1103/PhysRevD.97.066004 10.1007/JHEP11(2017)046 10.1103/PhysRevD.97.086015 10.1103/PhysRevD.92.126009 10.1103/PhysRevLett.119.071602 10.1103/PhysRevD.98.046002 10.1007/BF01218287 10.1007/978-1-4612-2256-9 10.1126/science.1121541 10.1063/1.59661 10.1103/PhysRevLett.120.031601 10.1006/aphy.2000.5994 10.1007/JHEP10(2017)107 10.1103/PhysRevD.93.086006 10.1016/0550-3213(89)90130-2 10.1007/JHEP09(2018)043 10.1103/PhysRevLett.115.261602 10.1038/35023282 10.1007/JHEP10(2017)008 10.1103/PhysRevLett.116.191301 10.1007/JHEP05(2018)036 10.1002/prop.201800034 10.1142/S0129055X18400019 10.1016/0550-3213(90)90534-K 10.1007/BF02099396 10.1016/0550-3213(88)90143-5 10.1103/PhysRevD.96.126001 |
| ContentType | Journal Article |
| Copyright | Copyright American Physical Society Jun 14, 2019 |
| Copyright_xml | – notice: Copyright American Physical Society Jun 14, 2019 |
| DBID | AAYXX CITATION NPM 7U5 8FD H8D L7M 7X8 |
| DOI | 10.1103/PhysRevLett.122.231302 |
| DatabaseName | CrossRef PubMed Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitleList | Aerospace Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1079-7114 |
| ExternalDocumentID | 31298880 10_1103_PhysRevLett_122_231302 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -~X 123 186 2-P 29O 3MX 3O- 41~ 5VS 6TJ 85S 8NH 8WZ 9M8 A6W AAYJJ AAYXX ABSSX ABUFD ACBEA ACGFO ACKIV ACNCT ADXHL AECSF AENEX AEQTI AETEA AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CITATION CS3 D0L DU5 EBS EJD ER. F5P H~9 MVM N9A NEJ NHB NPBMV OHT OK1 P0- P2P RNS ROL S7W SJN T9H TN5 UBC UBE VOH WH7 XOL XSW YNT YYP ZCG ZPR ZY4 ~02 NPM UCJ VQA 7U5 8FD H8D L7M 7X8 |
| ID | FETCH-LOGICAL-c387t-d598d71cf1a98c19d20cb5f46c972a28a093b0328c41f46ea715ca47380baf5a3 |
| IEDL.DBID | 3MX |
| ISICitedReferencesCount | 142 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000471988500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-9007 1079-7114 |
| IngestDate | Thu Jul 10 23:13:45 EDT 2025 Mon Jun 30 04:17:06 EDT 2025 Thu Jan 02 23:00:01 EST 2025 Sat Nov 29 05:55:25 EST 2025 Tue Nov 18 22:11:11 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c387t-d598d71cf1a98c19d20cb5f46c972a28a093b0328c41f46ea715ca47380baf5a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://link.aps.org/pdf/10.1103/PhysRevLett.122.231302 |
| PMID | 31298880 |
| PQID | 2249190163 |
| PQPubID | 2048222 |
| ParticipantIDs | proquest_miscellaneous_2257718877 proquest_journals_2249190163 pubmed_primary_31298880 crossref_citationtrail_10_1103_PhysRevLett_122_231302 crossref_primary_10_1103_PhysRevLett_122_231302 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-Jun-14 |
| PublicationDateYYYYMMDD | 2019-06-14 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-Jun-14 day: 14 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: College Park |
| PublicationTitle | Physical review letters |
| PublicationTitleAlternate | Phys Rev Lett |
| PublicationYear | 2019 |
| Publisher | American Physical Society |
| Publisher_xml | – name: American Physical Society |
| References | PhysRevLett.122.231302Cc2R1 PhysRevLett.122.231302Cc6R1 PhysRevLett.122.231302Cc4R2 PhysRevLett.122.231302Cc4R1 PhysRevLett.122.231302Cc19R1 J. R. Klauder (PhysRevLett.122.231302Cc50R1) 1968 PhysRevLett.122.231302Cc15R1 PhysRevLett.122.231302Cc15R2 PhysRevLett.122.231302Cc17R1 PhysRevLett.122.231302Cc38R1 PhysRevLett.122.231302Cc59R1 PhysRevLett.122.231302Cc11R1 PhysRevLett.122.231302Cc32R1 PhysRevLett.122.231302Cc57R1 PhysRevLett.122.231302Cc8R1 PhysRevLett.122.231302Cc13R1 P. Di Francesco (PhysRevLett.122.231302Cc31R1) 1997 PhysRevLett.122.231302Cc55R1 PhysRevLett.122.231302Cc53R1 PhysRevLett.122.231302Cc51R1 PhysRevLett.122.231302Cc26R1 PhysRevLett.122.231302Cc49R1 PhysRevLett.122.231302Cc28R1 PhysRevLett.122.231302Cc47R1 PhysRevLett.122.231302Cc22R1 PhysRevLett.122.231302Cc45R1 PhysRevLett.122.231302Cc24R1 PhysRevLett.122.231302Cc22R2 PhysRevLett.122.231302Cc20R1 PhysRevLett.122.231302Cc41R1 PhysRevLett.122.231302Cc5R1 PhysRevLett.122.231302Cc18R1 A. A. Kirillov (PhysRevLett.122.231302Cc30R1) 2004 PhysRevLett.122.231302Cc14R1 PhysRevLett.122.231302Cc37R1 PhysRevLett.122.231302Cc16R1 PhysRevLett.122.231302Cc39R1 PhysRevLett.122.231302Cc58R1 PhysRevLett.122.231302Cc10R1 PhysRevLett.122.231302Cc56R1 PhysRevLett.122.231302Cc12R1 PhysRevLett.122.231302Cc35R1 PhysRevLett.122.231302Cc54R1 PhysRevLett.122.231302Cc7R1 PhysRevLett.122.231302Cc52R1 PhysRevLett.122.231302Cc29R2 PhysRevLett.122.231302Cc29R1 PhysRevLett.122.231302Cc25R1 PhysRevLett.122.231302Cc27R1 PhysRevLett.122.231302Cc48R1 A. Marshakov (PhysRevLett.122.231302Cc55R2) 1990; 70 PhysRevLett.122.231302Cc21R1 PhysRevLett.122.231302Cc46R1 PhysRevLett.122.231302Cc23R1 PhysRevLett.122.231302Cc40R1 PhysRevLett.122.231302Cc42R1 |
| References_xml | – ident: PhysRevLett.122.231302Cc21R1 doi: 10.1103/PhysRevD.98.126001 – ident: PhysRevLett.122.231302Cc39R1 doi: 10.1007/BF02097053 – ident: PhysRevLett.122.231302Cc37R1 doi: 10.1007/s002200050156 – ident: PhysRevLett.122.231302Cc23R1 doi: 10.1007/JHEP08(2018)012 – ident: PhysRevLett.122.231302Cc15R2 doi: 10.1007/JHEP11(2017)097 – ident: PhysRevLett.122.231302Cc25R1 doi: 10.1007/JHEP07(2018)139 – ident: PhysRevLett.122.231302Cc13R1 doi: 10.1007/JHEP01(2017)062 – ident: PhysRevLett.122.231302Cc38R1 doi: 10.1103/PhysRevD.41.724 – ident: PhysRevLett.122.231302Cc40R1 doi: 10.1088/1361-6382/aa9806 – ident: PhysRevLett.122.231302Cc53R1 doi: 10.1103/PhysRevD.96.086002 – ident: PhysRevLett.122.231302Cc42R1 doi: 10.1088/0264-9381/12/12/012 – ident: PhysRevLett.122.231302Cc49R1 doi: 10.1007/JHEP10(2017)114 – ident: PhysRevLett.122.231302Cc4R2 doi: 10.1023/A:1026654312961 – ident: PhysRevLett.122.231302Cc51R1 doi: 10.1007/BF01645091 – ident: PhysRevLett.122.231302Cc52R1 doi: 10.1103/RevModPhys.54.407 – ident: PhysRevLett.122.231302Cc57R1 doi: 10.1016/S0370-2693(89)80025-5 – ident: PhysRevLett.122.231302Cc4R1 doi: 10.4310/ATMP.1998.v2.n2.a1 – ident: PhysRevLett.122.231302Cc45R1 doi: 10.1016/j.physletb.2016.02.050 – ident: PhysRevLett.122.231302Cc6R1 doi: 10.1103/PhysRevD.90.126007 – ident: PhysRevLett.122.231302Cc14R1 doi: 10.1103/PhysRevD.94.084046 – volume-title: Fundamentals of Quantum Optics year: 1968 ident: PhysRevLett.122.231302Cc50R1 – ident: PhysRevLett.122.231302Cc5R1 doi: 10.1002/prop.201500093 – ident: PhysRevLett.122.231302Cc28R1 doi: 10.1142/S0217732387001130 – ident: PhysRevLett.122.231302Cc18R1 doi: 10.1103/PhysRevLett.120.121602 – ident: PhysRevLett.122.231302Cc26R1 doi: 10.1007/JHEP05(2019)003 – ident: PhysRevLett.122.231302Cc54R1 doi: 10.1016/j.physletb.2018.10.071 – ident: PhysRevLett.122.231302Cc20R1 doi: 10.1007/JHEP02(2018)082 – ident: PhysRevLett.122.231302Cc19R1 doi: 10.1103/PhysRevD.97.066004 – ident: PhysRevLett.122.231302Cc47R1 doi: 10.1007/JHEP11(2017)046 – ident: PhysRevLett.122.231302Cc10R1 doi: 10.1103/PhysRevD.97.086015 – ident: PhysRevLett.122.231302Cc12R1 doi: 10.1103/PhysRevD.92.126009 – ident: PhysRevLett.122.231302Cc15R1 doi: 10.1103/PhysRevLett.119.071602 – ident: PhysRevLett.122.231302Cc22R2 doi: 10.1103/PhysRevD.98.046002 – ident: PhysRevLett.122.231302Cc32R1 doi: 10.1007/BF01218287 – volume: 70 start-page: 403 issn: 0038-5646 year: 1990 ident: PhysRevLett.122.231302Cc55R2 publication-title: Sov. Phys. JETP – volume-title: Conformal Field Theory year: 1997 ident: PhysRevLett.122.231302Cc31R1 doi: 10.1007/978-1-4612-2256-9 – ident: PhysRevLett.122.231302Cc2R1 doi: 10.1126/science.1121541 – ident: PhysRevLett.122.231302Cc59R1 doi: 10.1063/1.59661 – ident: PhysRevLett.122.231302Cc16R1 doi: 10.1103/PhysRevLett.120.031601 – ident: PhysRevLett.122.231302Cc41R1 doi: 10.1006/aphy.2000.5994 – ident: PhysRevLett.122.231302Cc17R1 doi: 10.1007/JHEP10(2017)107 – ident: PhysRevLett.122.231302Cc8R1 doi: 10.1103/PhysRevD.93.086006 – ident: PhysRevLett.122.231302Cc29R1 doi: 10.1016/0550-3213(89)90130-2 – ident: PhysRevLett.122.231302Cc27R1 doi: 10.1007/JHEP09(2018)043 – ident: PhysRevLett.122.231302Cc11R1 doi: 10.1103/PhysRevLett.115.261602 – ident: PhysRevLett.122.231302Cc35R1 doi: 10.1038/35023282 – ident: PhysRevLett.122.231302Cc46R1 doi: 10.1007/JHEP10(2017)008 – ident: PhysRevLett.122.231302Cc7R1 doi: 10.1103/PhysRevLett.116.191301 – ident: PhysRevLett.122.231302Cc48R1 doi: 10.1007/JHEP05(2018)036 – ident: PhysRevLett.122.231302Cc24R1 doi: 10.1002/prop.201800034 – ident: PhysRevLett.122.231302Cc29R2 doi: 10.1142/S0129055X18400019 – ident: PhysRevLett.122.231302Cc55R1 doi: 10.1016/0550-3213(90)90534-K – ident: PhysRevLett.122.231302Cc56R1 doi: 10.1007/BF02099396 – ident: PhysRevLett.122.231302Cc58R1 doi: 10.1016/0550-3213(88)90143-5 – ident: PhysRevLett.122.231302Cc22R1 doi: 10.1103/PhysRevD.96.126001 – volume-title: Lectures on the Orbit Method, Graduate Studies in Mathematics year: 2004 ident: PhysRevLett.122.231302Cc30R1 |
| SSID | ssj0001268 |
| Score | 2.6523254 |
| Snippet | We formulate Nielsen's geometric approach to circuit complexity in the context of two-dimensional conformal field theories, where series of conformal... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 231302 |
| SubjectTerms | Complexity Computation Conformal mapping Gates (circuits) Gravitation Tensors |
| Title | Quantum Computation as Gravity |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31298880 https://www.proquest.com/docview/2249190163 https://www.proquest.com/docview/2257718877 |
| Volume | 122 |
| WOSCitedRecordID | wos000471988500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABR databaseName: American Physical Society Journals customDbUrl: eissn: 1079-7114 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001268 issn: 0031-9007 databaseCode: 3MX dateStart: 20020101 isFulltext: true titleUrlDefault: https://journals.aps.org/ providerName: American Physical Society – providerCode: PRVIAO databaseName: SCOAP3 Journals customDbUrl: eissn: 1079-7114 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001268 issn: 0031-9007 databaseCode: ER. dateStart: 20180101 isFulltext: true titleUrlDefault: https://scoap3.org/ providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_GUPDF74_pHBV87ZY0bT4eRZw-6FBR6VtJkxYE3WTd9vd7abui4JBByUPbfFwuyf2Ou9wBXEYatRubBT5nXPmh1NZXNsxR56E2zanRprTovt2L0UjGsXpsAfnbgk8JGzhPyOds4W639GkQ9BGQsCp6pAxdygL2EDdHLw14dfQy53dARH0leHUzv6XRCohZiprhzvqD3IXtGlZ6V9U62INWNt6HzdK90xQH0Hua4wzOP70qiUPJDU8X3u1Uu9wRh_A6vHm5vvPrzAi-YVLMfBspaQU1OdVKGqpsQEwa5SE3SgQ6kJoolrpIeSak-DbTgkZGh4JJkuo80uwI2uPJODsBj2rCU5Ki5sd5mAut8Ikst9hFbhF_dSBazlBi6rDhLnvFR1KqD4QlP2hPkPakor0Dg6beVxU4498a3SUDknojFQkiDOUwC2cduGg-4xZwdg09ziZz908kUMRKITpwXDGu6ZIhnkEln5yuPZwz2EJw5EI0-DTsQns2nWfnsGEWs_di2ivXHZYilt9YztQX |
| linkProvider | American Physical Society |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Computation+as+Gravity&rft.jtitle=Physical+review+letters&rft.au=Caputa%2C+Pawe%C5%82&rft.au=Magan%2C+Javier+M&rft.date=2019-06-14&rft.eissn=1079-7114&rft.volume=122&rft.issue=23&rft.spage=231302&rft_id=info:doi/10.1103%2FPhysRevLett.122.231302&rft_id=info%3Apmid%2F31298880&rft.externalDocID=31298880 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon |