On canonical metrics on Cartan–Hartogs domains

The Cartan–Hartogs domains are defined as a class of Hartogs type domains over irreducible bounded symmetric domains. The purpose of this paper is twofold. Firstly, for a Cartan–Hartogs domain Ω B d 0 ( μ ) endowed with the canonical metric g ( μ ) , we obtain an explicit formula for the Bergman ker...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift Jg. 278; H. 1-2; S. 301 - 320
Hauptverfasser: Feng, Zhiming, Tu, Zhenhan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2014
Schlagworte:
ISSN:0025-5874, 1432-1823
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Cartan–Hartogs domains are defined as a class of Hartogs type domains over irreducible bounded symmetric domains. The purpose of this paper is twofold. Firstly, for a Cartan–Hartogs domain Ω B d 0 ( μ ) endowed with the canonical metric g ( μ ) , we obtain an explicit formula for the Bergman kernel of the weighted Hilbert space H α of square integrable holomorphic functions on Ω B d 0 ( μ ) , g ( μ ) with the weight exp { - α φ } (where φ is a globally defined Kähler potential for g ( μ ) ) for α > 0 , and, furthermore, we give an explicit expression of the Rawnsley’s ε -function expansion for Ω B d 0 ( μ ) , g ( μ ) . Secondly, using the explicit expression of the Rawnsley’s ε -function expansion, we show that the coefficient a 2 of the Rawnsley’s ε -function expansion for the Cartan–Hartogs domain Ω B d 0 ( μ ) , g ( μ ) is constant on Ω B d 0 ( μ ) if and only if Ω B d 0 ( μ ) , g ( μ ) is biholomorphically isometric to the complex hyperbolic space. So we give an affirmative answer to a conjecture raised by M. Zedda.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-014-1316-4