An improved kernelization algorithm for r-Set Packing

We present a reduction procedure that takes an arbitrary instance of the r-Set Packing problem and produces an equivalent instance whose number of elements is in O ( k r − 1 ) , where k is the input parameter. Such parameterized reductions are known as kernelization algorithms, and a reduced instanc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information processing letters Ročník 110; číslo 16; s. 621 - 624
Hlavní autor: Abu-Khzam, Faisal N.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 31.07.2010
Elsevier
Elsevier Sequoia S.A
Témata:
ISSN:0020-0190, 1872-6119
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a reduction procedure that takes an arbitrary instance of the r-Set Packing problem and produces an equivalent instance whose number of elements is in O ( k r − 1 ) , where k is the input parameter. Such parameterized reductions are known as kernelization algorithms, and a reduced instance is called a problem kernel. Our result improves on previously known kernelizations by a factor of k. In particular, the number of elements in a 3-Set Packing kernel is improved from a cubic function of the parameter to a quadratic one.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0020-0190
1872-6119
DOI:10.1016/j.ipl.2010.04.020