An improved kernelization algorithm for r-Set Packing
We present a reduction procedure that takes an arbitrary instance of the r-Set Packing problem and produces an equivalent instance whose number of elements is in O ( k r − 1 ) , where k is the input parameter. Such parameterized reductions are known as kernelization algorithms, and a reduced instanc...
Uložené v:
| Vydané v: | Information processing letters Ročník 110; číslo 16; s. 621 - 624 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier B.V
31.07.2010
Elsevier Elsevier Sequoia S.A |
| Predmet: | |
| ISSN: | 0020-0190, 1872-6119 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We present a reduction procedure that takes an arbitrary instance of the
r-Set Packing problem and produces an equivalent instance whose number of elements is in
O
(
k
r
−
1
)
, where
k is the input parameter. Such parameterized reductions are known as kernelization algorithms, and a reduced instance is called a problem kernel. Our result improves on previously known kernelizations by a factor of
k. In particular, the number of elements in a 3-Set Packing kernel is improved from a cubic function of the parameter to a quadratic one. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0020-0190 1872-6119 |
| DOI: | 10.1016/j.ipl.2010.04.020 |