An improved algorithm for outbreak detection in multiple surveillance systems

In England and Wales, a large‐scale multiple statistical surveillance system for infectious disease outbreaks has been in operation for nearly two decades. This system uses a robust quasi‐Poisson regression algorithm to identify aberrances in weekly counts of isolates reported to the Health Protecti...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Statistics in medicine Ročník 32; číslo 7; s. 1206 - 1222
Hlavní autori: Noufaily, Angela, Enki, Doyo G., Farrington, Paddy, Garthwaite, Paul, Andrews, Nick, Charlett, André
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Chichester, UK John Wiley & Sons, Ltd 30.03.2013
Wiley Subscription Services, Inc
Predmet:
ISSN:0277-6715, 1097-0258, 1097-0258
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In England and Wales, a large‐scale multiple statistical surveillance system for infectious disease outbreaks has been in operation for nearly two decades. This system uses a robust quasi‐Poisson regression algorithm to identify aberrances in weekly counts of isolates reported to the Health Protection Agency. In this paper, we review the performance of the system with a view to reducing the number of false reports, while retaining good power to detect genuine outbreaks. We undertook extensive simulations to evaluate the existing system in a range of contrasting scenarios. We suggest several improvements relating to the treatment of trends, seasonality, re‐weighting of baselines and error structure. We validate these results by running the existing and proposed new systems in parallel on real data. We find that the new system greatly reduces the number of alarms while maintaining good overall performance and in some instances increasing the sensitivity. Copyright © 2012 John Wiley & Sons, Ltd.
Bibliografia:Supporting information may be found in the online version of this article.
ark:/67375/WNG-NVQDVG0D-8
ArticleID:SIM5595
istex:8FC119C4D73BF8708735C53C9E0D95FB6DAD9B02
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ISSN:0277-6715
1097-0258
1097-0258
DOI:10.1002/sim.5595