Understanding catalysis

The large majority of chemical compounds underwent at least one catalytic step during synthesis. While it is common knowledge that catalysts enhance reaction rates by lowering the activation energy it is often obscure how catalysts achieve this. This tutorial review explains some fundamental princip...

Full description

Saved in:
Bibliographic Details
Published in:Chemical Society reviews Vol. 43; no. 24; p. 8226
Main Author: Roduner, Emil
Format: Journal Article
Language:English
Published: England 21.12.2014
ISSN:1460-4744, 1460-4744
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The large majority of chemical compounds underwent at least one catalytic step during synthesis. While it is common knowledge that catalysts enhance reaction rates by lowering the activation energy it is often obscure how catalysts achieve this. This tutorial review explains some fundamental principles of catalysis and how the mechanisms are studied. The dissociation of formic acid into H2 and CO2 serves to demonstrate how a water molecule can open a new reaction path at lower energy, how immersion in liquid water can influence the charge distribution and energetics, and how catalysis at metal surfaces differs from that in the gas phase. The reversibility of catalytic reactions, the influence of an adsorption pre-equilibrium and the compensating effects of adsorption entropy and enthalpy on the Arrhenius parameters are discussed. It is shown that flexibility around the catalytic centre and residual substrate dynamics on the surface affect these parameters. Sabatier's principle of optimum substrate adsorption, shape selectivity in the pores of molecular sieves and the polarisation effect at the metal-support interface are explained. Finally, it is shown that the application of a bias voltage in electrochemistry offers an additional parameter to promote or inhibit a reaction.
AbstractList The large majority of chemical compounds underwent at least one catalytic step during synthesis. While it is common knowledge that catalysts enhance reaction rates by lowering the activation energy it is often obscure how catalysts achieve this. This tutorial review explains some fundamental principles of catalysis and how the mechanisms are studied. The dissociation of formic acid into H2 and CO2 serves to demonstrate how a water molecule can open a new reaction path at lower energy, how immersion in liquid water can influence the charge distribution and energetics, and how catalysis at metal surfaces differs from that in the gas phase. The reversibility of catalytic reactions, the influence of an adsorption pre-equilibrium and the compensating effects of adsorption entropy and enthalpy on the Arrhenius parameters are discussed. It is shown that flexibility around the catalytic centre and residual substrate dynamics on the surface affect these parameters. Sabatier's principle of optimum substrate adsorption, shape selectivity in the pores of molecular sieves and the polarisation effect at the metal-support interface are explained. Finally, it is shown that the application of a bias voltage in electrochemistry offers an additional parameter to promote or inhibit a reaction.The large majority of chemical compounds underwent at least one catalytic step during synthesis. While it is common knowledge that catalysts enhance reaction rates by lowering the activation energy it is often obscure how catalysts achieve this. This tutorial review explains some fundamental principles of catalysis and how the mechanisms are studied. The dissociation of formic acid into H2 and CO2 serves to demonstrate how a water molecule can open a new reaction path at lower energy, how immersion in liquid water can influence the charge distribution and energetics, and how catalysis at metal surfaces differs from that in the gas phase. The reversibility of catalytic reactions, the influence of an adsorption pre-equilibrium and the compensating effects of adsorption entropy and enthalpy on the Arrhenius parameters are discussed. It is shown that flexibility around the catalytic centre and residual substrate dynamics on the surface affect these parameters. Sabatier's principle of optimum substrate adsorption, shape selectivity in the pores of molecular sieves and the polarisation effect at the metal-support interface are explained. Finally, it is shown that the application of a bias voltage in electrochemistry offers an additional parameter to promote or inhibit a reaction.
The large majority of chemical compounds underwent at least one catalytic step during synthesis. While it is common knowledge that catalysts enhance reaction rates by lowering the activation energy it is often obscure how catalysts achieve this. This tutorial review explains some fundamental principles of catalysis and how the mechanisms are studied. The dissociation of formic acid into H2 and CO2 serves to demonstrate how a water molecule can open a new reaction path at lower energy, how immersion in liquid water can influence the charge distribution and energetics, and how catalysis at metal surfaces differs from that in the gas phase. The reversibility of catalytic reactions, the influence of an adsorption pre-equilibrium and the compensating effects of adsorption entropy and enthalpy on the Arrhenius parameters are discussed. It is shown that flexibility around the catalytic centre and residual substrate dynamics on the surface affect these parameters. Sabatier's principle of optimum substrate adsorption, shape selectivity in the pores of molecular sieves and the polarisation effect at the metal-support interface are explained. Finally, it is shown that the application of a bias voltage in electrochemistry offers an additional parameter to promote or inhibit a reaction.
Author Roduner, Emil
Author_xml – sequence: 1
  givenname: Emil
  surname: Roduner
  fullname: Roduner, Emil
  email: e.roduner@ipc.uni-stuttgart.de
  organization: Institute of Physical Chemistry, University of Stuttgart, D-70569 Stuttgart, Germany. e.roduner@ipc.uni-stuttgart.de
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25311156$$D View this record in MEDLINE/PubMed
BookMark eNpNj0tLw0AUhQep2Idu3LgTl25S751nZimlaqHgxq7DZOZGIsmkZpJF_70BK7g6H5yPA2fJZrGLxNgtwhpB2CcvfQLgCHTBFig1ZNJIOfvHc7ZM6QsA0Wh-xeZcCURUesHuDjFQnwYXQx0_H7wbXHNKdbpml5VrEt2cc8UOL9uPzVu2f3_dbZ73mRe5HjLyXjid5wY5cayqoIGMCMJoJGtkXtnSWkOgygrt1FqlrMonr7Sm1C7wFXv83T323fdIaSjaOnlqGhepG1OBmmvUEiVM6v1ZHcuWQnHs69b1p-LvDP8BPZ9LNA
CitedBy_id crossref_primary_10_1002_advs_202308040
crossref_primary_10_1007_s11144_024_02673_3
crossref_primary_10_1016_j_apsusc_2022_155224
crossref_primary_10_1002_adma_202408259
crossref_primary_10_1002_adma_201504766
crossref_primary_10_15446_ing_investig_106683
crossref_primary_10_1016_j_chempr_2021_12_001
crossref_primary_10_1016_j_comptc_2024_114781
crossref_primary_10_1016_j_electacta_2019_04_163
crossref_primary_10_3390_batteries10040124
crossref_primary_10_1016_j_cattod_2017_05_091
crossref_primary_10_1073_pnas_2002956117
crossref_primary_10_3390_molecules23092230
crossref_primary_10_1007_s11172_024_4335_2
crossref_primary_10_1038_s41557_018_0023_x
crossref_primary_10_1002_aenm_202302436
crossref_primary_10_1002_ange_202421554
crossref_primary_10_1002_admt_202100672
crossref_primary_10_1088_1402_4896_ad954f
crossref_primary_10_1007_s11664_019_06934_z
crossref_primary_10_1080_01614940_2022_2100633
crossref_primary_10_1016_j_rineng_2024_103424
crossref_primary_10_1042_BCJ20170935
crossref_primary_10_1016_j_carres_2025_109571
crossref_primary_10_1016_j_physrep_2019_10_003
crossref_primary_10_1039_D2ME00049K
crossref_primary_10_1002_aenm_202102261
crossref_primary_10_1002_chem_202103953
crossref_primary_10_1016_j_mcat_2017_04_009
crossref_primary_10_1002_advs_202308956
crossref_primary_10_1002_aesr_202000015
crossref_primary_10_1016_j_jcat_2024_115902
crossref_primary_10_1039_D4CY00775A
crossref_primary_10_1007_s10800_021_01548_y
crossref_primary_10_1088_1361_6528_aab9da
crossref_primary_10_1016_j_polymertesting_2024_108616
crossref_primary_10_1039_D4CY01091D
crossref_primary_10_1088_1361_648X_ab5ed1
crossref_primary_10_1016_j_ccr_2024_216019
crossref_primary_10_1016_j_chemphys_2025_112682
crossref_primary_10_1038_s44222_025_00285_7
crossref_primary_10_1002_marc_202401149
crossref_primary_10_1002_vjch_202000082
crossref_primary_10_1016_j_jhazmat_2021_127709
crossref_primary_10_1016_j_jcis_2025_138452
crossref_primary_10_1093_nar_gky746
crossref_primary_10_1016_j_ccr_2025_217100
crossref_primary_10_1063_5_0020782
crossref_primary_10_1016_j_molliq_2016_10_058
crossref_primary_10_1016_j_apmt_2023_101937
crossref_primary_10_3390_catal10090992
crossref_primary_10_1080_14686996_2019_1598238
crossref_primary_10_1016_j_jmst_2024_01_043
crossref_primary_10_1088_2632_2153_adf9bc
crossref_primary_10_1039_D0NR02661A
crossref_primary_10_1002_cphc_202400766
crossref_primary_10_1038_s41467_017_00800_4
crossref_primary_10_3390_catal12101223
crossref_primary_10_1016_j_biombioe_2024_107056
crossref_primary_10_1038_s42004_021_00615_x
crossref_primary_10_1002_anie_202213295
crossref_primary_10_1016_j_checat_2023_100876
crossref_primary_10_1002_chin_201508342
crossref_primary_10_1021_acs_jchemed_4c00588
crossref_primary_10_1016_j_jpcs_2021_110423
crossref_primary_10_1002_cctc_202500640
crossref_primary_10_1016_j_ijhydene_2024_12_485
crossref_primary_10_1039_D5TA04223B
crossref_primary_10_3389_fchem_2020_00163
crossref_primary_10_1002_ange_202213295
crossref_primary_10_1016_j_jpowsour_2018_07_040
crossref_primary_10_1016_j_snb_2015_08_003
crossref_primary_10_1021_jacs_9b00486
crossref_primary_10_1007_s11705_024_2427_z
crossref_primary_10_1002_smll_202504632
crossref_primary_10_3390_catal11070810
crossref_primary_10_1016_j_talanta_2023_124928
crossref_primary_10_1016_j_apcata_2017_11_022
crossref_primary_10_1016_j_molliq_2015_12_074
crossref_primary_10_1016_j_apcatb_2017_01_017
crossref_primary_10_1016_j_catcom_2024_106883
crossref_primary_10_1021_acssusresmgt_5c00345
crossref_primary_10_1002_cctc_202001590
crossref_primary_10_26599_NR_2025_94907141
crossref_primary_10_1016_j_cattod_2025_115537
crossref_primary_10_1016_j_tet_2020_131767
crossref_primary_10_1080_14328917_2025_2459774
crossref_primary_10_1016_j_cej_2025_167770
crossref_primary_10_1039_C9CY02070E
crossref_primary_10_1039_D0SE00623H
crossref_primary_10_1016_j_ultsonch_2017_12_007
crossref_primary_10_1016_j_surfrep_2023_100597
crossref_primary_10_1002_anie_202411662
crossref_primary_10_1016_j_firesaf_2023_104003
crossref_primary_10_1002_adfm_202404794
crossref_primary_10_1016_j_carbon_2020_06_004
crossref_primary_10_1016_j_cej_2023_143435
crossref_primary_10_1016_j_polymer_2024_126834
crossref_primary_10_1002_anie_202423766
crossref_primary_10_1002_cplu_202300338
crossref_primary_10_1016_j_fuproc_2018_09_011
crossref_primary_10_3390_molecules29215071
crossref_primary_10_1016_j_fuel_2017_03_077
crossref_primary_10_1016_j_carbon_2023_02_014
crossref_primary_10_1039_C9NR06080D
crossref_primary_10_1016_j_mtener_2022_101111
crossref_primary_10_1016_j_ijhydene_2020_04_047
crossref_primary_10_1016_j_trechm_2022_11_007
crossref_primary_10_1016_j_ijhydene_2025_151120
crossref_primary_10_1007_s42250_024_00953_y
crossref_primary_10_1016_j_chempr_2023_10_019
crossref_primary_10_1039_C6CS00115G
crossref_primary_10_1016_j_electacta_2020_136753
crossref_primary_10_1002_adma_201707073
crossref_primary_10_1002_ejoc_202500110
crossref_primary_10_1016_j_cogsc_2017_07_002
crossref_primary_10_1002_ange_202423766
crossref_primary_10_1016_j_joule_2023_05_007
crossref_primary_10_1021_jacs_0c13185
crossref_primary_10_1016_j_scitotenv_2021_148004
crossref_primary_10_1002_anie_202421554
crossref_primary_10_1016_j_triboint_2024_110322
crossref_primary_10_1002_cctc_202400474
crossref_primary_10_3390_catal7050129
crossref_primary_10_1016_j_cherd_2025_03_029
crossref_primary_10_1002_cssc_202402085
crossref_primary_10_1002_cphc_202400561
crossref_primary_10_1016_j_est_2023_109127
crossref_primary_10_1039_D4SC06477A
crossref_primary_10_1016_j_jcou_2017_10_024
crossref_primary_10_1002_advs_202401508
crossref_primary_10_1002_rpm_20240015
crossref_primary_10_1039_D4EE01748J
crossref_primary_10_1016_j_ijhydene_2022_03_233
crossref_primary_10_1016_j_jwpe_2025_108320
crossref_primary_10_1002_admi_201600632
crossref_primary_10_1016_j_cattod_2018_07_023
crossref_primary_10_1016_j_apsusc_2023_158242
crossref_primary_10_1016_j_radphyschem_2024_111757
crossref_primary_10_1039_D4TA08664C
crossref_primary_10_1002_slct_201600559
crossref_primary_10_3390_ma16155321
crossref_primary_10_1039_C8CC02204F
crossref_primary_10_1039_D2CY00232A
crossref_primary_10_3390_cryst13030427
crossref_primary_10_1002_ange_202411662
crossref_primary_10_1002_ese3_935
crossref_primary_10_1002_cctc_202201493
crossref_primary_10_1007_s13738_025_03217_9
ContentType Journal Article
DBID NPM
7X8
DOI 10.1039/c4cs00210e
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
ExternalDocumentID 25311156
Genre Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
29B
2WC
4.4
53G
5GY
6J9
705
70~
7~J
85S
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
AIDUJ
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
COF
CS3
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3H
J3I
M4U
N9A
NPM
O9-
P2P
R7B
R7D
RAOCF
RCNCU
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SC5
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
XOL
~02
7X8
AKMSF
R56
ID FETCH-LOGICAL-c386t-ecc3a688712e21ffd60e73d3761e9748f9b997e05bf19fd6955958ffdb97b6ad2
IEDL.DBID 7X8
ISICitedReferencesCount 214
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345306000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1460-4744
IngestDate Fri Jul 11 13:29:10 EDT 2025
Thu Apr 03 07:08:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-ecc3a688712e21ffd60e73d3761e9748f9b997e05bf19fd6955958ffdb97b6ad2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25311156
PQID 1626164140
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1626164140
pubmed_primary_25311156
PublicationCentury 2000
PublicationDate 2014-12-21
PublicationDateYYYYMMDD 2014-12-21
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-21
  day: 21
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2014
SSID ssj0011762
Score 2.5634089
SecondaryResourceType review_article
Snippet The large majority of chemical compounds underwent at least one catalytic step during synthesis. While it is common knowledge that catalysts enhance reaction...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 8226
Title Understanding catalysis
URI https://www.ncbi.nlm.nih.gov/pubmed/25311156
https://www.proquest.com/docview/1626164140
Volume 43
WOSCitedRecordID wos000345306000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED0BRYKFb0r5UpFYrcaJa8cTQhUVA1QdKOoWxfZZYkkLLfx-zm6isiAhsWRJIp0d38u7O_sewK0XStgEbRA0kUx445g2FLg6JwgZQg-reBbm9UmNRvl0qsd1wm1Rb6tsMDECtZvZkCPvcWLeRO0pHribv7OgGhWqq7WExia0MqIyYVWr6bqKwFUUFCUwSBjZJJr2pJnuWWGjIFOCv1PL-IsZ7v_XuAPYq8ll9361Gg5hA6sj2Bk0mm7H0J78PMvSjbmb0JLkBCbDh5fBI6ulEZjNcrlkNPFZKQkgeIop997JBFXmCC04UoSQe220Vpj0jeea7oY-c_2cnjNaGVm69BS2qlmFZ9DlNiWw1ML2ZSkEovHCOiMw1ygTcsoO3DRjLsjaUE8oK5x9Lor1qDvQXk1cMV_1yChS8m0im_L8D29fwC7RkNg-MeWX0PLkeHgF2_Zr-bb4uI7flK6j8fM360Gq_Q
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+catalysis&rft.jtitle=Chemical+Society+reviews&rft.au=Roduner%2C+Emil&rft.date=2014-12-21&rft.issn=1460-4744&rft.eissn=1460-4744&rft.volume=43&rft.issue=24&rft.spage=8226&rft_id=info:doi/10.1039%2Fc4cs00210e&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-4744&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-4744&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-4744&client=summon