A Non-Data-Aided Maximum Likelihood Time Delay Estimator Using Importance Sampling

In this paper, we present a new time delay maximum likelihood estimator based on importance sampling (IS). We show that a grid search and lack of convergence from which most iterative estimators suffer can be avoided. It is assumed that the transmitted data are completely unknown at the receiver. Mo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on signal processing Ročník 59; číslo 10; s. 4505 - 4515
Hlavní autori: Masmoudi, A., Bellili, F., Affes, S., Stephenne, A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY IEEE 01.10.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1053-587X, 1941-0476
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we present a new time delay maximum likelihood estimator based on importance sampling (IS). We show that a grid search and lack of convergence from which most iterative estimators suffer can be avoided. It is assumed that the transmitted data are completely unknown at the receiver. Moreover the carrier phase is considered as an unknown nuisance parameter. The time delay remains constant over the observation interval and the received signal is corrupted by additive white Gaussian noise (AWGN). We use importance sampling to find the global maximum of the compressed likelihood function. Based on a global optimization procedure, the main idea of the new estimator is to generate realizations of a random variable using an importance function, which approximates the actual compressed likelihood function. We will see that the algorithm parameters affect the estimation performance and that with an appropriate parameter choice, even over a small observation interval, the time delay can be accurately estimated at far lower computational cost than with classical iterative methods.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2011.2161293