Convergence of the auxiliary model-based multi-innovation generalized extended stochastic gradient algorithm for Box–Jenkins systems

This paper focuses on the parameter estimation problem of Box–Jenkins systems. Using the multi-innovation identification theory, an auxiliary model-based multi-innovation generalized extended stochastic gradient algorithm is derived. The convergence of the proposed algorithm is analyzed based on the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nonlinear dynamics Ročník 82; číslo 1-2; s. 269 - 280
Hlavní autori: Wang, Xuehai, Ding, Feng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 01.10.2015
Springer Nature B.V
Predmet:
ISSN:0924-090X, 1573-269X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper focuses on the parameter estimation problem of Box–Jenkins systems. Using the multi-innovation identification theory, an auxiliary model-based multi-innovation generalized extended stochastic gradient algorithm is derived. The convergence of the proposed algorithm is analyzed based on the stochastic martingale theory. It is proved that the parameter estimation errors converge to zero under persistent excitation conditions. Two simulation examples are provided to confirm the convergence results.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-015-2155-5