Convergence of the auxiliary model-based multi-innovation generalized extended stochastic gradient algorithm for Box–Jenkins systems

This paper focuses on the parameter estimation problem of Box–Jenkins systems. Using the multi-innovation identification theory, an auxiliary model-based multi-innovation generalized extended stochastic gradient algorithm is derived. The convergence of the proposed algorithm is analyzed based on the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nonlinear dynamics Ročník 82; číslo 1-2; s. 269 - 280
Hlavní autoři: Wang, Xuehai, Ding, Feng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.10.2015
Springer Nature B.V
Témata:
ISSN:0924-090X, 1573-269X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper focuses on the parameter estimation problem of Box–Jenkins systems. Using the multi-innovation identification theory, an auxiliary model-based multi-innovation generalized extended stochastic gradient algorithm is derived. The convergence of the proposed algorithm is analyzed based on the stochastic martingale theory. It is proved that the parameter estimation errors converge to zero under persistent excitation conditions. Two simulation examples are provided to confirm the convergence results.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-015-2155-5