Convergence of the auxiliary model-based multi-innovation generalized extended stochastic gradient algorithm for Box–Jenkins systems
This paper focuses on the parameter estimation problem of Box–Jenkins systems. Using the multi-innovation identification theory, an auxiliary model-based multi-innovation generalized extended stochastic gradient algorithm is derived. The convergence of the proposed algorithm is analyzed based on the...
Uloženo v:
| Vydáno v: | Nonlinear dynamics Ročník 82; číslo 1-2; s. 269 - 280 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.10.2015
Springer Nature B.V |
| Témata: | |
| ISSN: | 0924-090X, 1573-269X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper focuses on the parameter estimation problem of Box–Jenkins systems. Using the multi-innovation identification theory, an auxiliary model-based multi-innovation generalized extended stochastic gradient algorithm is derived. The convergence of the proposed algorithm is analyzed based on the stochastic martingale theory. It is proved that the parameter estimation errors converge to zero under persistent excitation conditions. Two simulation examples are provided to confirm the convergence results. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0924-090X 1573-269X |
| DOI: | 10.1007/s11071-015-2155-5 |