Convergence of the auxiliary model-based multi-innovation generalized extended stochastic gradient algorithm for Box–Jenkins systems

This paper focuses on the parameter estimation problem of Box–Jenkins systems. Using the multi-innovation identification theory, an auxiliary model-based multi-innovation generalized extended stochastic gradient algorithm is derived. The convergence of the proposed algorithm is analyzed based on the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nonlinear dynamics Ročník 82; číslo 1-2; s. 269 - 280
Hlavní autoři: Wang, Xuehai, Ding, Feng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.10.2015
Springer Nature B.V
Témata:
ISSN:0924-090X, 1573-269X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper focuses on the parameter estimation problem of Box–Jenkins systems. Using the multi-innovation identification theory, an auxiliary model-based multi-innovation generalized extended stochastic gradient algorithm is derived. The convergence of the proposed algorithm is analyzed based on the stochastic martingale theory. It is proved that the parameter estimation errors converge to zero under persistent excitation conditions. Two simulation examples are provided to confirm the convergence results.
AbstractList This paper focuses on the parameter estimation problem of Box–Jenkins systems. Using the multi-innovation identification theory, an auxiliary model-based multi-innovation generalized extended stochastic gradient algorithm is derived. The convergence of the proposed algorithm is analyzed based on the stochastic martingale theory. It is proved that the parameter estimation errors converge to zero under persistent excitation conditions. Two simulation examples are provided to confirm the convergence results.
Author Ding, Feng
Wang, Xuehai
Author_xml – sequence: 1
  givenname: Xuehai
  surname: Wang
  fullname: Wang, Xuehai
  organization: Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, School of Mathematics and Physics, Henan University of Urban Construction
– sequence: 2
  givenname: Feng
  surname: Ding
  fullname: Ding, Feng
  email: fding@jiangnan.edu.cn
  organization: Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University
BookMark eNp9kMFqGzEQhkVIoE7SB-hN0LPakXbllY6taZuGQC4p5CZk7chWsiulkhycnnLqC_QN8yRZx4VCoT3NwPzfzPAdk8OYIhLyhsM7DtC9L5xDxxlwyQSXkskDMuOya5iY6-tDMgMtWgYarl-R41JuAKARoGbk5yLFe8wrjA5p8rSukdrNNgzB5gc6ph4HtrQFezpuhhpYiDHd2xpSpBOD2Q7hxzTEbcXYT02pya1tqcHRVbZ9wFipHVYph7oeqU-Zfkzbp8df5xhvQyy0PJSKYzklR94OBV__rifk2-dPV4szdnH55eviwwVzjZpXhnIpVW97rkRvpePaNa3mvm16jUuFc2ex6byct63oPGqHfOk9cK28EmBBNSfk7X7vXU7fN1iquUmbHKeTRgipG6WA71J8n3I5lZLRm7scxkmI4WB2us1et5l0m51uIyem-4txob6IqtmG4b-k2JNluhJXmP_89G_oGWXsmxk
CitedBy_id crossref_primary_10_1007_s00034_015_0164_8
crossref_primary_10_1016_j_jfranklin_2019_04_009
crossref_primary_10_1109_LSP_2018_2864609
crossref_primary_10_1016_j_dsp_2018_09_006
crossref_primary_10_1016_j_ifacol_2017_08_2436
crossref_primary_10_1007_s11071_016_3054_0
crossref_primary_10_1007_s00034_024_02777_0
crossref_primary_10_1016_j_dsp_2016_05_005
crossref_primary_10_1007_s00034_015_0210_6
crossref_primary_10_1177_1687814017730003
crossref_primary_10_1177_0142331216674772
crossref_primary_10_1007_s12555_016_0081_z
crossref_primary_10_1016_j_jfranklin_2015_08_018
crossref_primary_10_3390_a10030084
crossref_primary_10_1016_j_jfranklin_2020_02_009
crossref_primary_10_1016_j_jprocont_2016_11_007
crossref_primary_10_1007_s00034_016_0368_6
crossref_primary_10_1049_iet_cta_2015_1056
crossref_primary_10_1016_j_ifacol_2018_09_422
crossref_primary_10_1049_iet_cta_2018_6413
crossref_primary_10_1016_j_dsp_2016_11_010
crossref_primary_10_1016_j_apm_2020_08_076
crossref_primary_10_1016_j_jfranklin_2016_12_024
Cites_doi 10.1016/j.ins.2014.02.103
10.1007/s00034-010-9174-8
10.1016/j.jfranklin.2014.07.004
10.1007/s11071-014-1338-9
10.1007/978-3-642-15621-2_17
10.1016/j.amc.2014.08.096
10.1177/0142331211406604
10.1016/j.automatica.2006.09.004
10.1007/s00034-013-9704-2
10.1016/j.apm.2012.09.016
10.1007/s11071-014-1795-1
10.1016/j.sigpro.2014.03.031
10.1109/TIE.2013.2267698
10.1109/TAC.2003.820146
10.1109/TSMCB.2012.2210212
10.1007/s11071-013-1102-6
10.1007/s11071-009-9476-1
10.1016/j.simpat.2012.12.009
10.1049/iet-spr.2013.0327
10.1109/9.827371
10.1049/iet-spr.2013.0076
10.1007/s00034-013-9652-x
10.1016/j.aml.2013.10.011
10.1016/j.dsp.2008.12.002
10.1016/j.dsp.2010.01.004
10.1016/S0005-1098(00)00002-9
10.1016/j.dsp.2014.10.005
10.1016/j.sigpro.2014.08.011
10.1049/iet-spr.2013.0042
10.1016/j.automatica.2011.09.045
10.1016/j.dsp.2009.09.002
10.1007/s00034-012-9463-5
10.1016/j.automatica.2010.07.007
10.1016/j.sysconle.2006.08.001
10.1016/j.automatica.2006.07.024
10.1016/j.automatica.2011.01.022
10.1016/j.sysconle.2008.08.005
10.1016/j.automatica.2013.12.025
10.1016/j.automatica.2010.01.007
10.1016/j.amc.2009.01.069
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2015
Nonlinear Dynamics is a copyright of Springer, (2015). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2015
– notice: Nonlinear Dynamics is a copyright of Springer, (2015). All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11071-015-2155-5
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 280
ExternalDocumentID 10_1007_s11071_015_2155_5
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: ID0EHJAG238
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c386t-e5b58dad182da5c19c3491f43d9eb8e6cae37f564427fe9ce1bff0198f820a083
IEDL.DBID RSV
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000362578100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-090X
IngestDate Tue Nov 04 22:10:14 EST 2025
Sat Nov 29 03:06:13 EST 2025
Tue Nov 18 20:33:34 EST 2025
Fri Feb 21 02:32:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Box–Jenkins system
Recursive identification
Gradient search
Parameter estimation
Performance analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-e5b58dad182da5c19c3491f43d9eb8e6cae37f564427fe9ce1bff0198f820a083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2259388018
PQPubID 2043746
PageCount 12
ParticipantIDs proquest_journals_2259388018
crossref_primary_10_1007_s11071_015_2155_5
crossref_citationtrail_10_1007_s11071_015_2155_5
springer_journals_10_1007_s11071_015_2155_5
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems
PublicationTitle Nonlinear dynamics
PublicationTitleAbbrev Nonlinear Dyn
PublicationYear 2015
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References LiuXGLuJLeast squares based iterative identification for a class of multirate systemsAutomatica2010463549554287710610.1016/j.automatica.2010.01.0071194.93079
SunBZhuDQYangSXA bio-inspired filtered backstepping cascaded tracking control of 7000m manned submarine vehicleIEEE Trans. Ind. Electron.20146173682369210.1109/TIE.2013.2267698
PintelonRSchoukensJRolainYBox–Jenkins continuous-time modelingAutomatica2000367983991182969510.1016/S0005-1098(00)00002-90997.93005
XuXPWangFLiuGJQianFCIdentification of Hammerstein systems using key-term separation principle, auxiliary model and improved particle swarm optimisation algorithmIET Signal Process.20137876677310.1049/iet-spr.2013.0042
Chen, J., Wang, X.: Multi-innovation generalized extended stochastic gradient algorithm for multi-input multi-output nonlinear Box–Jenkins systems based on the auxiliary model. Life System Modelling and Intelligent Computing Lecture Notes in Computer Science, vol. 6328, pp. 136–146 (2010)
WangLYXieLWangXFThe residual based interactive stochastic gradient algorithms for controlled moving average modelsAppl. Math. Comput.20092112442449252604210.1016/j.amc.2009.01.0691162.93037
Arrieta, A.F., Neild, S.A., Wagg, D.J.: Nonlinear dynamic response and modeling of a bi-stable composite plate for applications to adaptive structures. Nonlinear Dyn.58(1–2), 259–272 (2009)
WangCTangTSeveral gradient-based iterative estimation algorithms for a class of nonlinear systems using the filtering techniqueNonlinear Dyn.201477376978010.1007/s11071-014-1338-9
VörösJParameter identification of Wiener systems with multisegment piecewise-linear nonlinearitiesSyst. Control Lett.20075629910510.1016/j.sysconle.2006.08.0011112.93019
GuYDingFLiJHState filtering and parameter estimation for linear systems with d-step state-delayIET Signal Process.20148663964610.1049/iet-spr.2013.0076
LjungLSystem Identification: Theory for the User19992Englewood Cliffs, NJPrentice Hall
LiuYJWangDQLeast squares based iterative algorithms for identifying Box–Jenkins models with finite measurement dataDigit. Signal Process.20102051458146710.1016/j.dsp.2010.01.004
LiHShiYRobust H-infty filtering for nonlinear stochastic systems with uncertainties and random delays modeled by Markov chainsAutomatica2012481159166287942410.1016/j.automatica.2011.09.0451244.93158
ChenJLuJAZhouJTopology identification of complex networks from noisy time series using ROC curve analysisNonlinear Dyn.2014754761768316462710.1007/s11071-013-1102-6
BaiEWLiKConvergence of the iterative algorithm for a general Hammerstein system identificationAutomatica2010461118911896287820710.1016/j.automatica.2010.07.0071218.93105
DingJFanCXLinJXAuxiliary model based parameter estimation for dual-rate output error systems with colored noiseAppl. Math. Model.201337640514058302055110.1016/j.apm.2012.09.016
Hu, Y.B.: Iterative and recursive least squares estimation algorithms for moving average systems. Simul. Model. Pract. Theory 34, 12–19 (2013)
XieLYangHZInteractive parameter estimation for output error moving average systemsTrans. Inst. Meas. Control2013351344310.1177/0142331211406604
ShiYYuBRobust mixed H-2/H-infinity control of networked control systems with random time delays in both forward and backward communication linksAutomatica2011474754760287833710.1016/j.automatica.2011.01.0221215.93045
DingFWangYJDingJRecursive least squares parameter estimation algorithms for systems with colored noise using the filtering technique and the auxiliary modelDigit. Signal Process.20153710010810.1016/j.dsp.2014.10.005
WangDQPerformance analysis of the auxiliary models based multi-innovation stochastic gradient estimation algorithm for output error systemsDigit. Signal Process.201020375076210.1016/j.dsp.2009.09.002
WangCTangTRecursive least squares estimation algorithm applied to a class of linear-in-parameters output error moving average systemsAppl. Math. Lett.2014293641313356810.1016/j.aml.2013.10.011
WangXHDingFPerformance analysis of the recursive parameter estimation algorithms for multivariable Box–Jenkins systemsJ. Franklin Inst. Eng. Appl. Math.20143511047494764325914110.1016/j.jfranklin.2014.07.004
ZhangYYangHZBias compensation recursive least squares identification for output error systems with colored noisesActa Automat. Sin.20073310105310601164.93415
ForssellULjungLIdentification of unstable systems using output error and Box–Jenkins model structuresIEEE Trans. Autom. Control2000451137141174195310.1109/9.8273710971.93075
VörösJRecursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zonesIEEE Trans. Autom. Control200348122203220610.1109/TAC.2003.820146
WuDHLiYYFault diagnosis of variable pitch for wind turbines based on the multi-innovation forgetting gradient identification algorithmNonlinear Dyn.20157932069207710.1007/s11071-014-1795-1
DingJLinJXModified subspace identification for periodically non-uniformly sampled systems by using the lifting techniqueCircuits Syst. Signal Process.20143351439144910.1007/s00034-013-9704-2
Ding, F., Chen, T.: Performance analysis of multi-innovation gradient type identification methods. Automatica 43(1), 1–14 (2007)
ZhangJBDingFShiYSelf-tuning control based on multi-innovation stochastic gradient parameter estimationSyst. Control Lett.20095816975248877710.1016/j.sysconle.2008.08.0051154.93040
DingFGuYPerformance analysis of the auxiliary model-based stochastic gradient parameter estimation algorithm for state space systems with one-step state delayCircuits Syst. Signal Process.2013322585599303604710.1007/s00034-012-9463-5
ZhuDQHuangHYangSXDynamic task assignment and path planning of multi-AUV system based on an improved self-organizing map and velocity synthesis method in three-dimensional underwater workspaceIEEE Trans. Cybern.201343250451410.1109/TSMCB.2012.2210212
DingFState filtering and parameter identification for state space systems with scarce measurementsSignal Process.201410436938010.1016/j.sigpro.2014.03.031
HuYBLiuBLZhouQYangCRecursive extended least squares parameter estimation for Wiener nonlinear systems with moving average noisesCircuits Syst. Signal Process.2014332655664316246010.1007/s00034-013-9652-x
HuYBLiuBLZhouQA multi-innovation generalized extended stochastic gradient algorithm for output nonlinear autoregressive moving average systemsAppl. Math. Comput.2014247218224327083410.1016/j.amc.2014.08.096
WuAGQianYYWuWJBias compensation-based recursive least-squares estimation with forgetting factors for output error moving average systemsIET Signal Process.20148548349410.1049/iet-spr.2013.0327
ZhuDQLiuQHuZFault-tolerant control algorithm of the manned submarine with multi-thruster based on quantum behaved particle swarm optimizationInt. J. Control2012841118171829285440410.1080/00207179.2011.626458
LiuYJDingFShiYAn efficient hierarchical identification method for general dual-rate sampled-data systemsAutomatica2014503962970317399810.1016/j.automatica.2013.12.0251298.93227
DingFSystem Identification—New Theory and Methods2013BeijingScience Press
GuYDingFLiJHStates based iterative parameter estimation for a state space model with multi-state delays using decompositionSignal Process.201510629430010.1016/j.sigpro.2014.08.011
HanLLDingFMulti-innovation stochastic gradient algorithms for multi-input multi-output systemsDigit. Signal Process.2009194545554259845010.1016/j.dsp.2008.12.002
LiuYJYuLMulti-innovation extended stochastic gradient algorithm and its performance analysisCircuits Syst. Signal Process.201029464966710.1007/s00034-010-9174-81196.94026
LiuYBaiEWIterative identification of Hammerstein systemsAutomatica2007432346354228184010.1016/j.automatica.2006.09.0041111.93013
DingFHierarchical parameter estimation algorithms for multivariable systems using measurement informationInform. Sci.2014277396405321198110.1016/j.ins.2014.02.103
DingFSystem Identification—Performances Analysis for Identification Methods2014BeijingScience Press
DQ Zhu (2155_CR8) 2013; 43
XH Wang (2155_CR10) 2014; 351
F Ding (2155_CR45) 2014; 277
DQ Wang (2155_CR28) 2010; 20
F Ding (2155_CR2) 2014
AG Wu (2155_CR12) 2014; 8
XP Xu (2155_CR14) 2013; 7
C Wang (2155_CR17) 2014; 29
R Pintelon (2155_CR4) 2000; 36
J Ding (2155_CR16) 2013; 37
Y Gu (2155_CR41) 2014; 8
Y Gu (2155_CR42) 2015; 106
U Forssell (2155_CR25) 2000; 45
H Li (2155_CR44) 2012; 48
L Ljung (2155_CR33) 1999
2155_CR6
XG Liu (2155_CR26) 2010; 46
Y Liu (2155_CR3) 2007; 43
L Xie (2155_CR15) 2013; 35
YJ Liu (2155_CR24) 2010; 29
B Sun (2155_CR9) 2014; 61
DH Wu (2155_CR19) 2015; 79
Y Shi (2155_CR43) 2011; 47
2155_CR20
EW Bai (2155_CR22) 2010; 46
J Ding (2155_CR39) 2014; 33
LL Han (2155_CR18) 2009; 19
F Ding (2155_CR29) 2014; 104
YB Hu (2155_CR37) 2014; 33
J Vörös (2155_CR36) 2007; 56
YJ Liu (2155_CR30) 2010; 20
F Ding (2155_CR32) 2013; 32
J Vörös (2155_CR35) 2003; 48
J Chen (2155_CR5) 2014; 75
C Wang (2155_CR34) 2014; 77
F Ding (2155_CR13) 2015; 37
YB Hu (2155_CR38) 2014; 247
JB Zhang (2155_CR21) 2009; 58
F Ding (2155_CR1) 2013
DQ Zhu (2155_CR7) 2012; 84
YJ Liu (2155_CR40) 2014; 50
Y Zhang (2155_CR11) 2007; 33
2155_CR27
LY Wang (2155_CR31) 2009; 211
2155_CR23
References_xml – reference: PintelonRSchoukensJRolainYBox–Jenkins continuous-time modelingAutomatica2000367983991182969510.1016/S0005-1098(00)00002-90997.93005
– reference: LiuYJWangDQLeast squares based iterative algorithms for identifying Box–Jenkins models with finite measurement dataDigit. Signal Process.20102051458146710.1016/j.dsp.2010.01.004
– reference: LiuYBaiEWIterative identification of Hammerstein systemsAutomatica2007432346354228184010.1016/j.automatica.2006.09.0041111.93013
– reference: VörösJRecursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zonesIEEE Trans. Autom. Control200348122203220610.1109/TAC.2003.820146
– reference: DingFState filtering and parameter identification for state space systems with scarce measurementsSignal Process.201410436938010.1016/j.sigpro.2014.03.031
– reference: DingFWangYJDingJRecursive least squares parameter estimation algorithms for systems with colored noise using the filtering technique and the auxiliary modelDigit. Signal Process.20153710010810.1016/j.dsp.2014.10.005
– reference: HuYBLiuBLZhouQYangCRecursive extended least squares parameter estimation for Wiener nonlinear systems with moving average noisesCircuits Syst. Signal Process.2014332655664316246010.1007/s00034-013-9652-x
– reference: WangXHDingFPerformance analysis of the recursive parameter estimation algorithms for multivariable Box–Jenkins systemsJ. Franklin Inst. Eng. Appl. Math.20143511047494764325914110.1016/j.jfranklin.2014.07.004
– reference: ZhuDQHuangHYangSXDynamic task assignment and path planning of multi-AUV system based on an improved self-organizing map and velocity synthesis method in three-dimensional underwater workspaceIEEE Trans. Cybern.201343250451410.1109/TSMCB.2012.2210212
– reference: DingFSystem Identification—Performances Analysis for Identification Methods2014BeijingScience Press
– reference: ZhangYYangHZBias compensation recursive least squares identification for output error systems with colored noisesActa Automat. Sin.20073310105310601164.93415
– reference: Ding, F., Chen, T.: Performance analysis of multi-innovation gradient type identification methods. Automatica 43(1), 1–14 (2007)
– reference: XieLYangHZInteractive parameter estimation for output error moving average systemsTrans. Inst. Meas. Control2013351344310.1177/0142331211406604
– reference: LiuYJDingFShiYAn efficient hierarchical identification method for general dual-rate sampled-data systemsAutomatica2014503962970317399810.1016/j.automatica.2013.12.0251298.93227
– reference: WuDHLiYYFault diagnosis of variable pitch for wind turbines based on the multi-innovation forgetting gradient identification algorithmNonlinear Dyn.20157932069207710.1007/s11071-014-1795-1
– reference: ForssellULjungLIdentification of unstable systems using output error and Box–Jenkins model structuresIEEE Trans. Autom. Control2000451137141174195310.1109/9.8273710971.93075
– reference: Chen, J., Wang, X.: Multi-innovation generalized extended stochastic gradient algorithm for multi-input multi-output nonlinear Box–Jenkins systems based on the auxiliary model. Life System Modelling and Intelligent Computing Lecture Notes in Computer Science, vol. 6328, pp. 136–146 (2010)
– reference: WangLYXieLWangXFThe residual based interactive stochastic gradient algorithms for controlled moving average modelsAppl. Math. Comput.20092112442449252604210.1016/j.amc.2009.01.0691162.93037
– reference: GuYDingFLiJHState filtering and parameter estimation for linear systems with d-step state-delayIET Signal Process.20148663964610.1049/iet-spr.2013.0076
– reference: LiuYJYuLMulti-innovation extended stochastic gradient algorithm and its performance analysisCircuits Syst. Signal Process.201029464966710.1007/s00034-010-9174-81196.94026
– reference: GuYDingFLiJHStates based iterative parameter estimation for a state space model with multi-state delays using decompositionSignal Process.201510629430010.1016/j.sigpro.2014.08.011
– reference: Arrieta, A.F., Neild, S.A., Wagg, D.J.: Nonlinear dynamic response and modeling of a bi-stable composite plate for applications to adaptive structures. Nonlinear Dyn.58(1–2), 259–272 (2009)
– reference: XuXPWangFLiuGJQianFCIdentification of Hammerstein systems using key-term separation principle, auxiliary model and improved particle swarm optimisation algorithmIET Signal Process.20137876677310.1049/iet-spr.2013.0042
– reference: ShiYYuBRobust mixed H-2/H-infinity control of networked control systems with random time delays in both forward and backward communication linksAutomatica2011474754760287833710.1016/j.automatica.2011.01.0221215.93045
– reference: BaiEWLiKConvergence of the iterative algorithm for a general Hammerstein system identificationAutomatica2010461118911896287820710.1016/j.automatica.2010.07.0071218.93105
– reference: Hu, Y.B.: Iterative and recursive least squares estimation algorithms for moving average systems. Simul. Model. Pract. Theory 34, 12–19 (2013)
– reference: WangDQPerformance analysis of the auxiliary models based multi-innovation stochastic gradient estimation algorithm for output error systemsDigit. Signal Process.201020375076210.1016/j.dsp.2009.09.002
– reference: LiHShiYRobust H-infty filtering for nonlinear stochastic systems with uncertainties and random delays modeled by Markov chainsAutomatica2012481159166287942410.1016/j.automatica.2011.09.0451244.93158
– reference: HanLLDingFMulti-innovation stochastic gradient algorithms for multi-input multi-output systemsDigit. Signal Process.2009194545554259845010.1016/j.dsp.2008.12.002
– reference: DingFSystem Identification—New Theory and Methods2013BeijingScience Press
– reference: WangCTangTSeveral gradient-based iterative estimation algorithms for a class of nonlinear systems using the filtering techniqueNonlinear Dyn.201477376978010.1007/s11071-014-1338-9
– reference: SunBZhuDQYangSXA bio-inspired filtered backstepping cascaded tracking control of 7000m manned submarine vehicleIEEE Trans. Ind. Electron.20146173682369210.1109/TIE.2013.2267698
– reference: WuAGQianYYWuWJBias compensation-based recursive least-squares estimation with forgetting factors for output error moving average systemsIET Signal Process.20148548349410.1049/iet-spr.2013.0327
– reference: ZhuDQLiuQHuZFault-tolerant control algorithm of the manned submarine with multi-thruster based on quantum behaved particle swarm optimizationInt. J. Control2012841118171829285440410.1080/00207179.2011.626458
– reference: DingFHierarchical parameter estimation algorithms for multivariable systems using measurement informationInform. Sci.2014277396405321198110.1016/j.ins.2014.02.103
– reference: ChenJLuJAZhouJTopology identification of complex networks from noisy time series using ROC curve analysisNonlinear Dyn.2014754761768316462710.1007/s11071-013-1102-6
– reference: WangCTangTRecursive least squares estimation algorithm applied to a class of linear-in-parameters output error moving average systemsAppl. Math. Lett.2014293641313356810.1016/j.aml.2013.10.011
– reference: LjungLSystem Identification: Theory for the User19992Englewood Cliffs, NJPrentice Hall
– reference: DingFGuYPerformance analysis of the auxiliary model-based stochastic gradient parameter estimation algorithm for state space systems with one-step state delayCircuits Syst. Signal Process.2013322585599303604710.1007/s00034-012-9463-5
– reference: DingJFanCXLinJXAuxiliary model based parameter estimation for dual-rate output error systems with colored noiseAppl. Math. Model.201337640514058302055110.1016/j.apm.2012.09.016
– reference: VörösJParameter identification of Wiener systems with multisegment piecewise-linear nonlinearitiesSyst. Control Lett.20075629910510.1016/j.sysconle.2006.08.0011112.93019
– reference: ZhangJBDingFShiYSelf-tuning control based on multi-innovation stochastic gradient parameter estimationSyst. Control Lett.20095816975248877710.1016/j.sysconle.2008.08.0051154.93040
– reference: DingJLinJXModified subspace identification for periodically non-uniformly sampled systems by using the lifting techniqueCircuits Syst. Signal Process.20143351439144910.1007/s00034-013-9704-2
– reference: LiuXGLuJLeast squares based iterative identification for a class of multirate systemsAutomatica2010463549554287710610.1016/j.automatica.2010.01.0071194.93079
– reference: HuYBLiuBLZhouQA multi-innovation generalized extended stochastic gradient algorithm for output nonlinear autoregressive moving average systemsAppl. Math. Comput.2014247218224327083410.1016/j.amc.2014.08.096
– volume: 277
  start-page: 396
  year: 2014
  ident: 2155_CR45
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.02.103
– volume: 29
  start-page: 649
  issue: 4
  year: 2010
  ident: 2155_CR24
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-010-9174-8
– volume: 351
  start-page: 4749
  issue: 10
  year: 2014
  ident: 2155_CR10
  publication-title: J. Franklin Inst. Eng. Appl. Math.
  doi: 10.1016/j.jfranklin.2014.07.004
– volume: 84
  start-page: 1817
  issue: 11
  year: 2012
  ident: 2155_CR7
  publication-title: Int. J. Control
– volume: 77
  start-page: 769
  issue: 3
  year: 2014
  ident: 2155_CR34
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-014-1338-9
– ident: 2155_CR27
  doi: 10.1007/978-3-642-15621-2_17
– volume: 247
  start-page: 218
  year: 2014
  ident: 2155_CR38
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2014.08.096
– volume: 35
  start-page: 34
  issue: 1
  year: 2013
  ident: 2155_CR15
  publication-title: Trans. Inst. Meas. Control
  doi: 10.1177/0142331211406604
– volume: 43
  start-page: 346
  issue: 2
  year: 2007
  ident: 2155_CR3
  publication-title: Automatica
  doi: 10.1016/j.automatica.2006.09.004
– volume: 33
  start-page: 1439
  issue: 5
  year: 2014
  ident: 2155_CR39
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-013-9704-2
– volume: 37
  start-page: 4051
  issue: 6
  year: 2013
  ident: 2155_CR16
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2012.09.016
– volume: 79
  start-page: 2069
  issue: 3
  year: 2015
  ident: 2155_CR19
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-014-1795-1
– volume: 104
  start-page: 369
  year: 2014
  ident: 2155_CR29
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2014.03.031
– volume: 61
  start-page: 3682
  issue: 7
  year: 2014
  ident: 2155_CR9
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2013.2267698
– volume: 33
  start-page: 1053
  issue: 10
  year: 2007
  ident: 2155_CR11
  publication-title: Acta Automat. Sin.
– volume-title: System Identification: Theory for the User
  year: 1999
  ident: 2155_CR33
– volume: 48
  start-page: 2203
  issue: 12
  year: 2003
  ident: 2155_CR35
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2003.820146
– volume: 43
  start-page: 504
  issue: 2
  year: 2013
  ident: 2155_CR8
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2210212
– volume: 75
  start-page: 761
  issue: 4
  year: 2014
  ident: 2155_CR5
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-013-1102-6
– ident: 2155_CR6
  doi: 10.1007/s11071-009-9476-1
– ident: 2155_CR23
  doi: 10.1016/j.simpat.2012.12.009
– volume: 8
  start-page: 483
  issue: 5
  year: 2014
  ident: 2155_CR12
  publication-title: IET Signal Process.
  doi: 10.1049/iet-spr.2013.0327
– volume-title: System Identification—Performances Analysis for Identification Methods
  year: 2014
  ident: 2155_CR2
– volume: 45
  start-page: 137
  issue: 1
  year: 2000
  ident: 2155_CR25
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/9.827371
– volume: 8
  start-page: 639
  issue: 6
  year: 2014
  ident: 2155_CR41
  publication-title: IET Signal Process.
  doi: 10.1049/iet-spr.2013.0076
– volume: 33
  start-page: 655
  issue: 2
  year: 2014
  ident: 2155_CR37
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-013-9652-x
– volume: 29
  start-page: 36
  year: 2014
  ident: 2155_CR17
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2013.10.011
– volume: 19
  start-page: 545
  issue: 4
  year: 2009
  ident: 2155_CR18
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2008.12.002
– volume: 20
  start-page: 1458
  issue: 5
  year: 2010
  ident: 2155_CR30
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2010.01.004
– volume: 36
  start-page: 983
  issue: 7
  year: 2000
  ident: 2155_CR4
  publication-title: Automatica
  doi: 10.1016/S0005-1098(00)00002-9
– volume: 37
  start-page: 100
  year: 2015
  ident: 2155_CR13
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2014.10.005
– volume: 106
  start-page: 294
  year: 2015
  ident: 2155_CR42
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2014.08.011
– volume: 7
  start-page: 766
  issue: 8
  year: 2013
  ident: 2155_CR14
  publication-title: IET Signal Process.
  doi: 10.1049/iet-spr.2013.0042
– volume: 48
  start-page: 159
  issue: 1
  year: 2012
  ident: 2155_CR44
  publication-title: Automatica
  doi: 10.1016/j.automatica.2011.09.045
– volume: 20
  start-page: 750
  issue: 3
  year: 2010
  ident: 2155_CR28
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2009.09.002
– volume: 32
  start-page: 585
  issue: 2
  year: 2013
  ident: 2155_CR32
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-012-9463-5
– volume: 46
  start-page: 1891
  issue: 11
  year: 2010
  ident: 2155_CR22
  publication-title: Automatica
  doi: 10.1016/j.automatica.2010.07.007
– volume: 56
  start-page: 99
  issue: 2
  year: 2007
  ident: 2155_CR36
  publication-title: Syst. Control Lett.
  doi: 10.1016/j.sysconle.2006.08.001
– ident: 2155_CR20
  doi: 10.1016/j.automatica.2006.07.024
– volume: 47
  start-page: 754
  issue: 4
  year: 2011
  ident: 2155_CR43
  publication-title: Automatica
  doi: 10.1016/j.automatica.2011.01.022
– volume: 58
  start-page: 69
  issue: 1
  year: 2009
  ident: 2155_CR21
  publication-title: Syst. Control Lett.
  doi: 10.1016/j.sysconle.2008.08.005
– volume: 50
  start-page: 962
  issue: 3
  year: 2014
  ident: 2155_CR40
  publication-title: Automatica
  doi: 10.1016/j.automatica.2013.12.025
– volume: 46
  start-page: 549
  issue: 3
  year: 2010
  ident: 2155_CR26
  publication-title: Automatica
  doi: 10.1016/j.automatica.2010.01.007
– volume: 211
  start-page: 442
  issue: 2
  year: 2009
  ident: 2155_CR31
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2009.01.069
– volume-title: System Identification—New Theory and Methods
  year: 2013
  ident: 2155_CR1
SSID ssj0003208
Score 2.2765377
Snippet This paper focuses on the parameter estimation problem of Box–Jenkins systems. Using the multi-innovation identification theory, an auxiliary model-based...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 269
SubjectTerms Algorithms
Automotive Engineering
Classical Mechanics
Computer simulation
Control
Convergence
Dynamical Systems
Economic models
Engineering
Estimating techniques
Innovations
Martingales
Mathematical models
Mechanical Engineering
Original Paper
Parameter estimation
Parameter identification
Vibration
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VlgMc-rGA2NJWPnACWWw-vElOFVRUVVVVSBS0t2jiOLuRlt0lSVHbEyf-QP8hv4QZr7MBJPZCro4tSzO234zH7wG8DKMB6sQrpNYDlKHvG5kxAy0q-nSGGdqc7ueL6PIyHo2SDy7hVruyynZPtBt1PtecI39DfpcwcYkXHy--SlaN4ttVJ6HxALaYJcGzpXsfVztx4FtFugHFGJyPGLW3mvbpHMU9HEgrSR2VVH-eSx3Y_Ot-1B47pzv_O-Fd2HaAU7xdesgebJhZD3Yc-BRuadc9ePwbM-ET-HHC1ej2YaYR80IQTBR4fVNOS6xuhZXPkXwA5sJWJMpyJa4qxksi6_KOGtsUuyCIqSfInNBiXNkqs0bgdEzzbSZfBAFn8W5-8_P7_blhKYdaLAmm66fw6fT91cmZdJINUgfxsJFGZSrOMaeoJUelvUQHIXlCGOSJyWIz1GiCqFAEwvyoMIk2XlYUhDLjgpAIEhx8Bpuz-cw8B-Eh_eghEwuHofGTOIjzMAqLKNBDDDDpw6A1WKodnznLakzTjomZbZySjVO2car68GrVZbEk81j380Fr19St6zrtjNqH161ndM3_HGx__WAv4JHPrmiLBA9gs6muzSE81N-asq6OrFP_AnCDAKg
  priority: 102
  providerName: ProQuest
Title Convergence of the auxiliary model-based multi-innovation generalized extended stochastic gradient algorithm for Box–Jenkins systems
URI https://link.springer.com/article/10.1007/s11071-015-2155-5
https://www.proquest.com/docview/2259388018
Volume 82
WOSCitedRecordID wos000362578100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxEB3R0EM5EJq2IhQiH3pqZSn74az3SCJQhaoIJS3KbTXr9SYrpQnaXRBw4sQf4B_2l3Ts7CZtVSrRvfpDK4_teWOP3wP44AddVKGTcqW6yH3X1Tw2DLQo6FMxxmjPdC--BMOhnEzC8-odd1Fnu9dXknan3jx2o0jFhL6Ck5sSXLyAbfJ20ug1jMYX6-3Xc60MXZcCC3MIMamvMv_Wxe_OaIMw_7gUtb7mtPlff7kHuxW0ZMerufAatvSiBc0KZrJqERct2PmFg_ANPAxM3rl9gqnZMmUECBle3WTzDPNbZoVyuHF1CbO5hzxby6iy6YqyOrujwvownRGYVDM07M9smtt8spLhfLrMs3L2nRFEZv3lzY_7xzNtRBsKtqKSLt7Ct9OTr4PPvBJn4MqTvZJrEQuZYELxSYJCOaHyfLK57yWhjqXuKdRekAqCW26Q6lBpJ05TwpMyJcyBBPzeQWOxXOh9YA5SRQcNhbDvazeUnkz8wE8DT_XQw7AN3dpKkaqYy42AxjzacC6bUY9o1CMz6pFow8d1k8sVbce_Kh_Wpo-qFVxEtM-FhijHkW34VJt6U_xkZwfPqv0eXrlmrtjswENolPmVPoKX6rrMirwD2_2T4fmoYxJSxx07zX8CyZn4ZA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VgkQ5UCitulDAB7iALDZOvIkPCNFC1dJlhURBewuO42wjLbtlk_5x4sQL9D36UH0SZpxklyK1tx7I1Y4VOZ9nvrHH3wA8C8K2NsrLuDFtzQMhLE9IgVZLfEyiE-32dL92w14v6vfVpzk4a-7CUFplYxOdoU7HhvbIXyHuFAmXeNGb_R-cqkbR6WpTQqOCxY49OcKQrXi9_Q7_73MhNt_vbmzxuqoAN37UKbmViYxSnSKxTrU0njJ-gB8b-KmySWQ7Rls_zCTyBBFmVhnrJVmGRCjK0FlqZCw47g24iTRCKJcq-Hlq-X3hKuC1Maah_Y9-c4rqruphnEWBu-ToZCWXF_3gjNz-cx7r3Nzm4v82Qffgbk2o2dtqBdyHOTtagsWaXLPadBVLcOcv5cUH8HuDsu3dxVPLxhlDGsz0wXE-zPXkhLnyQJwcfMpcxiXPp8Vj2aAS6s5_YmNzhMCQQps9TZrXbDBxWXQl08MBzk-5951hYMDWx8fnv04_WCpVUbBKQLtYhi_XMjcrMD8aj-wqME9jR0-TcHIQWKEiP0qDMMhC33S0r1UL2g1AYlPrtVPZkGE8U5omTMWIqZgwFcsWvJi-sl-JlVzVea3BUVzbrSKegagFLxskzpovHezh1YM9hdtbux-7cXe7t_MIFgQtA5cQuQbz5eTAPoZb5rDMi8kTt6AYfLtugP4Bv1dfQA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1RqCp6KJQWdQsUH3pqZbFJ7E1yBMoKCloh8aG9RRPHXiJtd1ESKtpTT_0D_MP-ko6dZLegtlLVXP2hyB573tjj9wDeirCLKvYMV6qLXPi-5qlloEVJn0oxRXeme3kSDgbRcBifNjqnZZvt3l5J1m8aLEvTpNq5zszO_OEbRS02DJacXJbk8hEsCZtHb8P1s8vZVhz4TpKuS0GGPZAYtteav-vivmOao80HF6TO7_RX_vuPV-FZAznZbm0jz2FBT9ZgpYGfrFnc5Ro8_YWb8AV837f56O5ppmZTwwgoMry5zcc5Fl-YE9Dh1gVmzOUk8nwmr8pGNZV1_pUK20N2RiBTXaFlhWajwuWZVQzHo2mRV1efGEFntje9_fHt7qO2Yg4lqymmy5dw0T843z_kjWgDV0HUq7iWqYwyzChuyVAqL1aBIFsQQRbrNNI9hToIjSQY5odGx0p7qTGEMyNDWAQJEK7D4mQ60a-AeUgVPbTUwkJoP46CKBOhMGGgehhg3IFuO2OJahjNrbDGOJlzMdtRT2jUEzvqiezAu1mT65rO42-VN1szSJqVXSa0_8WWQMeLOvC-nfZ58R87e_1PtbfhyemHfnJyNDjegGXfmo1LINyExaq40VvwWH2u8rJ44-z9J2XeAak
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+of+the+auxiliary+model-based+multi-innovation+generalized+extended+stochastic+gradient+algorithm+for+Box%E2%80%93Jenkins+systems&rft.jtitle=Nonlinear+dynamics&rft.au=Wang%2C+Xuehai&rft.au=Ding%2C+Feng&rft.date=2015-10-01&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=82&rft.issue=1-2&rft.spage=269&rft.epage=280&rft_id=info:doi/10.1007%2Fs11071-015-2155-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11071_015_2155_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon