Convergence of the auxiliary model-based multi-innovation generalized extended stochastic gradient algorithm for Box–Jenkins systems

This paper focuses on the parameter estimation problem of Box–Jenkins systems. Using the multi-innovation identification theory, an auxiliary model-based multi-innovation generalized extended stochastic gradient algorithm is derived. The convergence of the proposed algorithm is analyzed based on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics Jg. 82; H. 1-2; S. 269 - 280
Hauptverfasser: Wang, Xuehai, Ding, Feng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.10.2015
Springer Nature B.V
Schlagworte:
ISSN:0924-090X, 1573-269X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper focuses on the parameter estimation problem of Box–Jenkins systems. Using the multi-innovation identification theory, an auxiliary model-based multi-innovation generalized extended stochastic gradient algorithm is derived. The convergence of the proposed algorithm is analyzed based on the stochastic martingale theory. It is proved that the parameter estimation errors converge to zero under persistent excitation conditions. Two simulation examples are provided to confirm the convergence results.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-015-2155-5