A GLRT approach to data-aided timing acquisition in UWB radios-Part I: algorithms

Realizing the great potential of impulse radio communications depends critically on the success of timing acquisition. To this end, optimum data-aided (DA) timing offset estimators are derived in this paper based on the maximum likelihood (ML) criterion. Specifically, generalized likelihood ratio te...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications Vol. 4; no. 6; pp. 2956 - 2967
Main Authors: Zhi Tian, Giannakis, G.B.
Format: Journal Article
Language:English
Published: New York IEEE 01.11.2005
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1536-1276, 1558-2248
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Realizing the great potential of impulse radio communications depends critically on the success of timing acquisition. To this end, optimum data-aided (DA) timing offset estimators are derived in this paper based on the maximum likelihood (ML) criterion. Specifically, generalized likelihood ratio tests (GLRTs) are employed to detect an ultrawideband (UWB) waveform propagating through dense multipath and to estimate the associated timing and channel parameters in closed form. Capitalizing on the pulse repetition pattern, the GLRT boils down to an amplitude estimation problem, based on which closed-form timing acquisition estimates can be obtained without invoking any line search. The proposed algorithms only employ digital samples collected at a low symbol rate, thus reducing considerably the implementation complexity and acquisition time. Analytical acquisition performance bounds and corroborating simulations are also provided.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2005.858356