Bifurcation of 2-periodic orbits from non-hyperbolic fixed points

We introduce the concept of 2-cyclicity for families of one-dimensional maps with a non-hyperbolic fixed point by analogy to the cyclicity for families of planar vector fields with a weak focus. This new concept is useful in order to study the number of 2-periodic orbits that can bifurcate from the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical analysis and applications Ročník 457; číslo 1; s. 568 - 584
Hlavní autoři: Cima, Anna, Gasull, Armengol, Mañosa, Víctor
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: Elsevier Inc 01.01.2018
Témata:
ISSN:0022-247X, 1096-0813
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We introduce the concept of 2-cyclicity for families of one-dimensional maps with a non-hyperbolic fixed point by analogy to the cyclicity for families of planar vector fields with a weak focus. This new concept is useful in order to study the number of 2-periodic orbits that can bifurcate from the fixed point. As an application we study the 2-cyclicity of some natural families of polynomial maps.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2017.08.029