Constant factor approximation algorithms for the densest k-subgraph problem on proper interval graphs and bipartite permutation graphs

The densest k-subgraph problem asks for a k-vertex subgraph with the maximum number of edges. This problem is NP-hard on bipartite graphs, chordal graphs, and planar graphs. A 3-approximation algorithm is known for chordal graphs. We present 3 2 -approximation algorithms for proper interval graphs a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters Jg. 110; H. 16; S. 635 - 638
Hauptverfasser: Backer, Jonathan, Keil, J. Mark
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 31.07.2010
Elsevier
Elsevier Sequoia S.A
Schlagworte:
ISSN:0020-0190, 1872-6119
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The densest k-subgraph problem asks for a k-vertex subgraph with the maximum number of edges. This problem is NP-hard on bipartite graphs, chordal graphs, and planar graphs. A 3-approximation algorithm is known for chordal graphs. We present 3 2 -approximation algorithms for proper interval graphs and bipartite permutation graphs. The latter result relies on a new characterisation of bipartite permutation graphs which may be of independent interest.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0020-0190
1872-6119
DOI:10.1016/j.ipl.2010.05.011