On ideal convergence in probabilistic normed spaces

An interesting generalization of statistical convergence is I -convergence which was introduced by P.Kostyrko et al [KOSTYRKO,P.—ŠALÁT,T.—WILCZYŃSKI,W.: I-Convergence , Real Anal. Exchange 26 (2000–2001), 669–686]. In this paper, we define and study the concept of I -convergence, I *-convergence, I...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematica Slovaca Ročník 62; číslo 1; s. 49 - 62
Hlavní autoři: Mursaleen, M., Mohiuddine, S. A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Heidelberg SP Versita 01.02.2012
Versita
Témata:
ISSN:0139-9918, 1337-2211
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract An interesting generalization of statistical convergence is I -convergence which was introduced by P.Kostyrko et al [KOSTYRKO,P.—ŠALÁT,T.—WILCZYŃSKI,W.: I-Convergence , Real Anal. Exchange 26 (2000–2001), 669–686]. In this paper, we define and study the concept of I -convergence, I *-convergence, I -limit points and I -cluster points in probabilistic normed space. We discuss the relationship between I -convergence and I *-convergence, i.e. we show that I *-convergence implies the I -convergence in probabilistic normed space. Furthermore, we have also demonstrated through an example that, in general, I -convergence does not imply I *-convergence in probabilistic normed space.
AbstractList An interesting generalization of statistical convergence is I -convergence which was introduced by P.Kostyrko et al [KOSTYRKO,P.—ŠALÁT,T.—WILCZYŃSKI,W.: I-Convergence , Real Anal. Exchange 26 (2000–2001), 669–686]. In this paper, we define and study the concept of I -convergence, I *-convergence, I -limit points and I -cluster points in probabilistic normed space. We discuss the relationship between I -convergence and I *-convergence, i.e. we show that I *-convergence implies the I -convergence in probabilistic normed space. Furthermore, we have also demonstrated through an example that, in general, I -convergence does not imply I *-convergence in probabilistic normed space.
An interesting generalization of statistical convergence is I-convergence which was introduced by P.Kostyrko et al [KOSTYRKO,P.—ŠALÁT,T.—WILCZYŃSKI,W.: I-Convergence, Real Anal. Exchange 26 (2000–2001), 669–686]. In this paper, we define and study the concept of I-convergence, I*-convergence, I-limit points and I-cluster points in probabilistic normed space. We discuss the relationship between I-convergence and I*-convergence, i.e. we show that I*-convergence implies the I-convergence in probabilistic normed space. Furthermore, we have also demonstrated through an example that, in general, I-convergence does not imply I*-convergence in probabilistic normed space.
Author Mohiuddine, S. A.
Mursaleen, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Mursaleen
  fullname: Mursaleen, M.
  email: mursaleenm@gmail.com
  organization: Department of Mathematics, Aligarh Muslim University
– sequence: 2
  givenname: S. A.
  surname: Mohiuddine
  fullname: Mohiuddine, S. A.
  organization: Department of Mathematics Faculty of Science, King Abdulaziz University
BookMark eNqNj81KAzEURoNUsK0-gLt5gWhuMpnJbAQp_kGhG12HTHKnpEyTkoxK394p40pQXN27OefjLMgsxICEXAO74WWtbjNwqCVlAJSxGmhzRuYgRE05B5iROQPR0KYBdUEWOe8Yk7UUYk7EJhTeoekLG8MHpi0Gi4UPxSHF1rS-93nwtggx7dEV-WAs5kty3pk-49X3XZK3x4fX1TNdb55eVvdraoWqBmqEsJVTrrPY1rIB3pbMMKe6DgSqRmAJXLZWgrSyrDpmGYKDDkpkzFmnxJLUk9emmHPCTls_mMHHMCTjew1Mn9r11K7Hdn1q181Iwg_ykPzepOOfzN3EfJp-wORwm96P46N38T2FsfN3tuJQngR8EuRxLGz_RYovcA-BpQ
CitedBy_id crossref_primary_10_1007_s41478_022_00411_3
crossref_primary_10_1186_s13662_019_2306_y
crossref_primary_10_1186_1029_242X_2013_309
crossref_primary_10_1007_s11253_017_1370_2
crossref_primary_10_1155_2017_3154280
crossref_primary_10_1186_s13660_016_1284_9
crossref_primary_10_3390_sym15111983
crossref_primary_10_1007_s41478_021_00352_3
crossref_primary_10_1155_2013_126163
crossref_primary_10_1186_1687_1847_2012_149
crossref_primary_10_1155_2014_909364
crossref_primary_10_1186_1029_242X_2012_225
crossref_primary_10_1186_s13660_018_1831_7
crossref_primary_10_3934_mfc_2023044
crossref_primary_10_1007_s40306_014_0069_9
crossref_primary_10_1515_jaa_2023_0148
crossref_primary_10_1186_s13660_021_02669_w
crossref_primary_10_1155_2013_749684
crossref_primary_10_1007_s40010_020_00694_w
crossref_primary_10_1186_1029_242X_2014_40
crossref_primary_10_5269_bspm_v36i4_32870
crossref_primary_10_1007_s11565_012_0157_5
crossref_primary_10_1155_2014_396254
crossref_primary_10_1155_2013_507962
crossref_primary_10_1515_ms_2017_0152
crossref_primary_10_1080_03081079_2022_2052062
crossref_primary_10_1080_01630563_2018_1557204
crossref_primary_10_1186_1029_242X_2012_234
crossref_primary_10_1016_j_ajmsc_2013_09_002
crossref_primary_10_1155_2013_257181
crossref_primary_10_1155_2022_2779479
crossref_primary_10_1155_2014_101782
crossref_primary_10_1155_2013_765060
crossref_primary_10_1186_1687_1847_2013_227
crossref_primary_10_1155_2016_7594031
crossref_primary_10_1186_1029_242X_2013_149
crossref_primary_10_1186_1687_1847_2013_66
crossref_primary_10_31801_cfsuasmas_1566187
crossref_primary_10_1155_2013_189721
crossref_primary_10_1016_j_joems_2013_06_005
crossref_primary_10_1186_s13660_019_2175_7
crossref_primary_10_2298_FIL2504135K
crossref_primary_10_1007_s10114_016_5025_2
crossref_primary_10_1155_2014_134534
crossref_primary_10_1155_2014_535419
crossref_primary_10_1155_2015_413850
crossref_primary_10_5269_bspm_v33i2_22008
crossref_primary_10_1155_2013_148249
crossref_primary_10_1155_2020_9298650
crossref_primary_10_3233_JIFS_16662
crossref_primary_10_1016_j_joems_2013_08_005
crossref_primary_10_1155_2014_354846
crossref_primary_10_1186_s13660_021_02664_1
crossref_primary_10_1016_S0252_9602_14_60009_6
crossref_primary_10_1155_2013_264520
crossref_primary_10_1080_03610926_2019_1640880
crossref_primary_10_1155_2014_674159
crossref_primary_10_1186_s13660_021_02564_4
crossref_primary_10_1186_1687_1847_2012_39
crossref_primary_10_1016_j_joems_2013_01_005
crossref_primary_10_1016_j_amc_2015_12_048
crossref_primary_10_1155_2013_451762
crossref_primary_10_1080_09720502_2014_914276
Cites_doi 10.1016/j.camwa.2009.11.002
10.1016/j.jmaa.2007.09.016
10.1016/j.jmaa.2006.05.040
10.1006/jmaa.1998.6261
10.1006/jmaa.1997.5333
10.1016/0022-247X(71)90158-2
10.1073/pnas.28.12.535
10.1016/S0022-247X(02)00577-2
10.1016/j.cam.2009.07.005
10.1090/S0002-9939-1993-1181163-6
10.1016/j.jmaa.2003.08.004
10.1007/s10114-010-9050-2
10.1016/j.chaos.2008.09.018
10.1112/plms/s3-37.3.508
ContentType Journal Article
Copyright Versita Warsaw and Springer-Verlag Wien 2012
Copyright_xml – notice: Versita Warsaw and Springer-Verlag Wien 2012
DBID AAYXX
CITATION
DOI 10.2478/s12175-011-0071-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1337-2211
EndPage 62
ExternalDocumentID 10_2478_s12175_011_0071_9
10_2478_s12175_011_0071_962149
GroupedDBID -5D
-5G
-BR
-Y2
.86
.VR
06D
0VY
1N0
29M
2JY
2LR
2VQ
2~H
30V
3V.
4.4
408
40D
5GY
5VS
67Z
6HX
6NX
8FE
8FG
8TC
95.
95~
AAAEU
AADQG
AAFPC
AAGVJ
AAIAL
AAJBH
AALGR
AAONY
AAPJK
AAQCX
AARHV
AASQH
AAXCG
AAYZH
ABAQN
ABFKT
ABJCF
ABJNI
ABMNI
ABPLS
ABRQL
ABSOE
ABTEG
ABUWG
ABVMU
ABWLS
ABYKJ
ACBXY
ACDEB
ACEFL
ACGFS
ACIPV
ACIWK
ACMKP
ACOMO
ACPMA
ACXLN
ACZBO
ADGQD
ADGYE
ADINQ
ADJVZ
ADKPE
ADOZN
ADRFC
AEICA
AEKEB
AENEX
AEQDQ
AERZL
AFBAA
AFBBN
AFCXV
AFGCZ
AFGNR
AFKRA
AFLOW
AFWTZ
AFYRI
AGBEV
AGJBK
AHBYD
AHSBF
AHVWV
AHXUK
AIKXB
AKXKS
ALMA_UNASSIGNED_HOLDINGS
AMAVY
AMKLP
ARAPS
ASPBG
ASYPN
AVWKF
AZFZN
AZMOX
AZQEC
BA0
BAKPI
BAPOH
BBCWN
BCIFA
BENPR
BGLVJ
BGNMA
BLHJL
BPHCQ
CAG
CCPQU
CFGNV
COF
CS3
CSCUP
DBYYV
DU5
DWQXO
E3Z
EBS
EJD
FEDTE
GNUQQ
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HVGLF
HZ~
H~9
IAO
IEA
IJ-
IXC
IY9
I~X
I~Z
K6V
K7-
KDIRW
KOV
L6V
LO0
M0N
M4Y
M7S
MA-
NU0
OK1
P2P
P9R
PF0
PQQKQ
PROAC
PTHSS
QD8
QOS
R9I
RIG
ROL
RPX
RSV
S1Z
S27
S3B
SDH
SHX
SLJYH
SMT
SOJ
SZN
T13
TR2
TSK
TSV
TUC
U2A
UK5
VC2
WK8
WTRAM
~A9
AAOUV
AARVR
ABFSG
ABMBZ
ACSTC
ACUND
ADNPR
AECWL
AEZWR
AFBDD
AFHIU
AHWEU
AIWOI
AIXLP
AMVHM
DSRVY
AAYXX
CITATION
ID FETCH-LOGICAL-c386t-a33c6d8dfceb75912b40a0d8ff13e893e4125bc515c546f0c0e1d1f14e00dcd83
IEDL.DBID RSV
ISICitedReferencesCount 421
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000298662400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0139-9918
IngestDate Sat Nov 29 04:10:47 EST 2025
Tue Nov 18 20:50:28 EST 2025
Sat Nov 29 01:30:38 EST 2025
Fri Feb 21 02:31:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords cluster points
convergence
Primary 40A05
limit points
t-norm
probabilistic normed space
Secondary 46A70
Language English
License This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
http://creativecommons.org/licenses/by-nc-nd/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-a33c6d8dfceb75912b40a0d8ff13e893e4125bc515c546f0c0e1d1f14e00dcd83
OpenAccessLink https://www.degruyter.com/doi/10.2478/s12175-011-0071-9
PageCount 14
ParticipantIDs crossref_citationtrail_10_2478_s12175_011_0071_9
crossref_primary_10_2478_s12175_011_0071_9
walterdegruyter_journals_10_2478_s12175_011_0071_962149
springer_journals_10_2478_s12175_011_0071_9
PublicationCentury 2000
PublicationDate 20120200
2012-2-1
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 2
  year: 2012
  text: 20120200
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Mathematica Slovaca
PublicationTitleAbbrev Math. Slovaca
PublicationYear 2012
Publisher SP Versita
Versita
Publisher_xml – name: SP Versita
– name: Versita
References Balcerzak, Dems, Komisarski (CR2) 2007; 328
Alsina, Schweizer, Sklar (CR1) 1997; 208
Komisarski (CR13) 2008; 340
Fridy (CR7) 1985; 5
Dems (CR3) 2004; 30
Mursaleen, Edely (CR16) 2003; 288
Schweizer, Sklar (CR20) 1960; 10
Freedman, Sember, Raphael (CR6) 1978; 37
Mursaleen, Mohiuddine (CR17) 2009; 233
Mursaleen, Çakan, Mohiuddine, Savasş (CR15) 2010; 26
Fast (CR4) 1951; 2
Steinhaus (CR22) 1951; 2
Mursaleen, Mohiuddine, Edely (CR19) 2010; 59
Guillén, Lallena, Sempi (CR9) 1999; 232
Schweizer, Sklar (CR21) 1983
Karakus (CR11) 2007; 12
Frank (CR5) 1971; 34
Mursaleen, Mohiuddine (CR18) 2009; 41
Kostyrko, Šalát, Wilczyński (CR12) 2000; 26
Guillén, Sempi (CR10) 2003; 280
Fridy (CR8) 1993; 118
Menger (CR14) 1942; 28
References_xml – volume: 59
  start-page: 603
  year: 2010
  end-page: 611
  ident: CR19
  article-title: On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces
  publication-title: Comput.Math. Appl.
  doi: 10.1016/j.camwa.2009.11.002
– volume: 340
  start-page: 770
  year: 2008
  end-page: 779
  ident: CR13
  article-title: Pointwise I-convergence and I*-convergence in measure of sequences of functions
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2007.09.016
– volume: 328
  start-page: 715
  year: 2007
  end-page: 729
  ident: CR2
  article-title: Statistical convergence and ideal convergence for sequences of functions
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2006.05.040
– volume: 10
  start-page: 313
  year: 1960
  end-page: 334
  ident: CR20
  article-title: Statistical metric spaces
  publication-title: Pacific J. Math.
– volume: 232
  start-page: 183
  year: 1999
  end-page: 196
  ident: CR9
  article-title: A study of boundedness in probabilistic normed spaces
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1998.6261
– volume: 2
  start-page: 73
  year: 1951
  end-page: 74
  ident: CR22
  article-title: Surla convergence ordinaire et la convergence asymptotique
  publication-title: Colloq. Math.
– volume: 208
  start-page: 446
  year: 1997
  end-page: 452
  ident: CR1
  article-title: Continuity properties of probabilistic norms
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1997.5333
– volume: 34
  start-page: 67
  year: 1971
  end-page: 81
  ident: CR5
  article-title: Probabilistic topological spaces
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(71)90158-2
– volume: 12
  start-page: 11
  year: 2007
  end-page: 23
  ident: CR11
  article-title: Statistical convergence on probabilistic normed spaces
  publication-title: Math. Commun.
– volume: 28
  start-page: 535
  year: 1942
  end-page: 537
  ident: CR14
  article-title: Statistical metrics
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.28.12.535
– volume: 280
  start-page: 9
  year: 2003
  end-page: 16
  ident: CR10
  article-title: Probabilistic norms and convergence of random variables
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/S0022-247X(02)00577-2
– volume: 2
  start-page: 241
  year: 1951
  end-page: 244
  ident: CR4
  article-title: Surla convergence statistique
  publication-title: Colloq. Math.
– year: 1983
  ident: CR21
  publication-title: Probabilistic Metric Spaces
– volume: 233
  start-page: 142
  year: 2009
  end-page: 149
  ident: CR17
  article-title: On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2009.07.005
– volume: 118
  start-page: 1187
  year: 1993
  end-page: 1192
  ident: CR8
  article-title: Statistical limit points
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-1993-1181163-6
– volume: 26
  start-page: 669
  year: 2000
  end-page: 686
  ident: CR12
  article-title: I-Convergence
  publication-title: Real Anal. Exchange
– volume: 288
  start-page: 223
  year: 2003
  end-page: 231
  ident: CR16
  article-title: Statistical convergence of double sequences
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2003.08.004
– volume: 5
  start-page: 301
  year: 1985
  end-page: 313
  ident: CR7
  article-title: On statistical convergence
  publication-title: Analysis
– volume: 26
  start-page: 1
  year: 2010
  end-page: 14
  ident: CR15
  article-title: Generalized statistical convergence and core of double sequences
  publication-title: Acta Math. Sin. (Engl. Ser.)
  doi: 10.1007/s10114-010-9050-2
– volume: 41
  start-page: 2414
  year: 2009
  end-page: 2421
  ident: CR18
  article-title: Statistical convergence of double sequences in intuitionistic fuzzy normed spaces
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2008.09.018
– volume: 37
  start-page: 508
  year: 1978
  end-page: 520
  ident: CR6
  article-title: Some Cesàro type summability spaces
  publication-title: Proc. London Math. Soc. (3)
  doi: 10.1112/plms/s3-37.3.508
– volume: 30
  start-page: 123
  year: 2004
  end-page: 128
  ident: CR3
  article-title: On I-Cauchy sequences
  publication-title: Real Anal. Exchange
SSID ssj0057533
Score 2.422954
Snippet An interesting generalization of statistical convergence is I -convergence which was introduced by P.Kostyrko et al [KOSTYRKO,P.—ŠALÁT,T.—WILCZYŃSKI,W.:...
An interesting generalization of statistical convergence is I-convergence which was introduced by P.Kostyrko et al [KOSTYRKO,P.—ŠALÁT,T.—WILCZYŃSKI,W.:...
SourceID crossref
walterdegruyter
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 49
SubjectTerms Algebra
I-cluster points
I-convergence
I-limit points
Mathematics
Mathematics and Statistics
Primary 40A05
probabilistic normed space
Secondary 46A70
t-norm
Title On ideal convergence in probabilistic normed spaces
URI https://link.springer.com/article/10.2478/s12175-011-0071-9
https://www.degruyter.com/doi/10.2478/s12175-011-0071-9
Volume 62
WOSCitedRecordID wos000298662400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1337-2211
  dateEnd: 20141231
  omitProxy: false
  ssIdentifier: ssj0057533
  issn: 0139-9918
  databaseCode: RSV
  dateStart: 20070201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66enAP6xvf5OBJKTZNN02PIooXV_HF3ko7SWRBqmy7iv_eSdosKLKo90xTvqYz3zCTbwg5jCBHkgwQMCMMJih9HRRWCRMwezaJViJV0g2bSAYDORymN-097sp3u_uSpPPUtlk5TuRJxZA920YzTH8xLgbpPFnAaCftvIbbu0fvfpF-NPPjkdoESH5kU8r8-RFfg5Hftkt6765WrfTTePJR-9qoCzkXy_962RXSaxkmPW2OxCqZ0-Ua6V5N5VmrdcKvSzpSSBGpazp39y81HZXUjpdxkrtWvZmWyGe1ouhz0JlskIeL8_uzy6CdnhAAl6IOcs5BKKkM6CLppywq4jAPlTSGcY0sRcfIbQpAPgP9WJgQQs0UMyzWYahASb5JOuVLqbcIRS-AFhjG0CDGxXksFDDOQKQ5pDzdJqGHMYNWWtxOuHjOMMWweGQNHhnikVk8MjQ5mpq8NroasxYfe5Sz9herZq1Ovn2-XxiJCFPFnT_ts0uWkD1FTQv3HunU44neJ4vwVo-q8YE7lJ_Y4dk2
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86Bd3D_MZv8-CTUmyarE0fRRwTtyk6ZW-hzYcMpMq6Kf73XtJ2oMhQ33NN-TW9-x13-R1Cx4FMgCRL6RETGkhQmtpLrRKmhOzZRFqFseJu2ETU6_HBIL4t73HnVbd7VZJ0nto2K7OIn-UE2LNtNIP0F-KiF8-jBQYBywrm390_Vu4X6EcxPx6ojQfkhxelzJ8f8TUYVdvWUePd1aqVfhpNPsZVbdSFnNbKv152FTVKhonPiyOxhuZ0to7q3ak8a76B6E2GhwooInZN5-7-pcbDDNvxMk5y16o34wz4rFYYfA44k0300LrsX7S9cnqCJykPx15CqQwVV0bqNGrGJEiZn_iKG0OoBpaiGXCbVAKfkU0WGl_6mihiCNO-r6TidAvVspdMbyMMXgAsIIyBAYPFCQuVJJTIME5kTOMd5FcwCllKi9sJF88CUgyLhyjwEICHsHgIMDmZmrwWuhqzFp9WKIvyF8tnrY6-fb5fGIUBpIq7f9rnCC21-92O6Fz1rvfQMjCpoGjn3ke18WiiD9CifBsP89GhO6CfEKXcGg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66iriH9Y1vc_CkFJsmm6ZHURdFXRd8sLfS5iELUpdtV_HfO0nbBUUWxXumDdN05hvmyzcIHQYyAZAspUcMN1CgtLWXWiVMCdWzCbXikRJu2ETY7Yp-P-pVc07zmu1etyTLOw1WpSkrTobKOOIyC8VJTgBJW9IZlMKQI71oFs0xy6O35fr9Ux2KAYqUs-QB5ngAhETZ1vz5EV8TU72FJmq9u7610s-j8UdR90ld-uks_Xvjy6hVIU98Wh6VFTSjs1XUvJ3ItuZriN5leKAAOmJHRnf3MjUeZNiOnXFSvFbVGWeAc7XCEIsgyKyjx87Fw9mlV01V8CQVvPASSiVXQhmp07AdkSBlfuIrYQyhGtCLZoB5Ugk4R7YZN770NVHEEKZ9X0kl6AZqZK-Z3kQYogNYQHoDAwaLE8aVJJRIHiUyotEW8muXxrKSHLeTL15iKD2sP-LSHzH4I7b-iMHkaGIyLPU2pi0-rj0eV79ePm11-O1T_sKIB1BCbv_pPQdooXfeiW-uutc7aBEAVlCyvHdRoxiN9R6al2_FIB_tu7P6CUtp5P4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+ideal+convergence+in+probabilistic+normed+spaces&rft.jtitle=Mathematica+Slovaca&rft.au=Mursaleen%2C+M.&rft.au=Mohiuddine%2C+S.&rft.date=2012-02-01&rft.issn=0139-9918&rft.eissn=1337-2211&rft.volume=62&rft.issue=1&rft.spage=49&rft.epage=62&rft_id=info:doi/10.2478%2Fs12175-011-0071-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_s12175_011_0071_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0139-9918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0139-9918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0139-9918&client=summon