Matrix Stability of Multiquadric Radial Basis Function Methods for Hyperbolic Equations with Uniform Centers

The fully discretized multiquadric radial basis function methods for hyperbolic equations are considered. We use the matrix stability analysis for various methods, including the single and multi-domain method and the local radial basis function method, to find the stability condition. The CFL condit...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of scientific computing Ročník 51; číslo 3; s. 683 - 702
Hlavní autori: Chen, Xinjuan, Jung, Jae-Hun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Boston Springer US 01.06.2012
Springer Nature B.V
Predmet:
ISSN:0885-7474, 1573-7691
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The fully discretized multiquadric radial basis function methods for hyperbolic equations are considered. We use the matrix stability analysis for various methods, including the single and multi-domain method and the local radial basis function method, to find the stability condition. The CFL condition for each method is obtained numerically. It is explained that the obtained CFL condition is only a necessary condition. That is, the numerical solution may grow for a finite time. It is also explained that the boundary condition is crucial for stability; however, it may degrade accuracy if it is imposed.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-011-9526-y