On the strong convergence of a general-type Krasnosel’skii–Mann’s algorithm depending on the coefficients
Let H be a Hilbert space, ( W n ) n ∈ N a suitable family of mappings, S a nonexpansive mapping and D a strongly monotone operator. We are interested in the strong convergence of the general scheme x n + 1 = γ x n + ( 1 - γ ) W n ( α n S x n + ( 1 - α n ) ( I - μ n D ) x n ) , γ ∈ [ 0 , 1 ) , in dep...
Saved in:
| Published in: | Fixed point theory and algorithms for sciences and engineering Vol. 18; no. 1; pp. 1 - 25 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
01.03.2016
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1661-7738, 1661-7746, 2730-5422 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Let
H
be a Hilbert space,
(
W
n
)
n
∈
N
a suitable family of mappings,
S
a nonexpansive mapping and
D
a strongly monotone operator. We are interested in the strong convergence of the general scheme
x
n
+
1
=
γ
x
n
+
(
1
-
γ
)
W
n
(
α
n
S
x
n
+
(
1
-
α
n
)
(
I
-
μ
n
D
)
x
n
)
,
γ
∈
[
0
,
1
)
,
in dependence of the coefficients
(
α
n
)
n
∈
N
and
(
μ
n
)
n
∈
N
. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1661-7738 1661-7746 2730-5422 |
| DOI: | 10.1007/s11784-015-0261-0 |