AN ACCURATE AND EFFICIENT ALGORITHM FOR DETECTION OF RADIO BURSTS WITH AN UNKNOWN DISPERSION MEASURE, FOR SINGLE-DISH TELESCOPES AND INTERFEROMETERS
ABSTRACT Astronomical radio signals are subjected to phase dispersion while traveling through the interstellar medium. To optimally detect a short-duration signal within a frequency band, we have to precisely compensate for the unknown pulse dispersion, which is a computationally demanding task. We...
Uloženo v:
| Vydáno v: | The Astrophysical journal Ročník 835; číslo 1; s. 11 - 23 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia
The American Astronomical Society
20.01.2017
IOP Publishing |
| Témata: | |
| ISSN: | 0004-637X, 1538-4357 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | ABSTRACT Astronomical radio signals are subjected to phase dispersion while traveling through the interstellar medium. To optimally detect a short-duration signal within a frequency band, we have to precisely compensate for the unknown pulse dispersion, which is a computationally demanding task. We present the "fast dispersion measure transform" algorithm for optimal detection of such signals. Our algorithm has a low theoretical complexity of , where Nf, Nt, and NΔ are the numbers of frequency bins, time bins, and dispersion measure bins, respectively. Unlike previously suggested fast algorithms, our algorithm conserves the sensitivity of brute-force dedispersion. Our tests indicate that this algorithm, running on a standard desktop computer and implemented in a high-level programming language, is already faster than the state-of-the-art dedispersion codes running on graphical processing units (GPUs). We also present a variant of the algorithm that can be efficiently implemented on GPUs. The latter algorithm's computation and data-transport requirements are similar to those of a two-dimensional fast Fourier transform, indicating that incoherent dedispersion can now be considered a nonissue while planning future surveys. We further present a fast algorithm for sensitive detection of pulses shorter than the dispersive smearing limits of incoherent dedispersion. In typical cases, this algorithm is orders of magnitude faster than enumerating dispersion measures and coherently dedispersing by convolution. We analyze the computational complexity of pulsed signal searches by radio interferometers. We conclude that, using our suggested algorithms, maximally sensitive blind searches for dispersed pulses are feasible using existing facilities. We provide an implementation of these algorithms in Python and MATLAB. |
|---|---|
| AbstractList | Astronomical radio signals are subjected to phase dispersion while traveling through the interstellar medium. To optimally detect a short-duration signal within a frequency band, we have to precisely compensate for the unknown pulse dispersion, which is a computationally demanding task. We present the “fast dispersion measure transform” algorithm for optimal detection of such signals. Our algorithm has a low theoretical complexity of 2N{sub f}N{sub t}+N{sub t}N{sub Δ}log{sub 2}(N{sub f}), where N{sub f}, N{sub t}, and N{sub Δ} are the numbers of frequency bins, time bins, and dispersion measure bins, respectively. Unlike previously suggested fast algorithms, our algorithm conserves the sensitivity of brute-force dedispersion. Our tests indicate that this algorithm, running on a standard desktop computer and implemented in a high-level programming language, is already faster than the state-of-the-art dedispersion codes running on graphical processing units (GPUs). We also present a variant of the algorithm that can be efficiently implemented on GPUs. The latter algorithm’s computation and data-transport requirements are similar to those of a two-dimensional fast Fourier transform, indicating that incoherent dedispersion can now be considered a nonissue while planning future surveys. We further present a fast algorithm for sensitive detection of pulses shorter than the dispersive smearing limits of incoherent dedispersion. In typical cases, this algorithm is orders of magnitude faster than enumerating dispersion measures and coherently dedispersing by convolution. We analyze the computational complexity of pulsed signal searches by radio interferometers. We conclude that, using our suggested algorithms, maximally sensitive blind searches for dispersed pulses are feasible using existing facilities. We provide an implementation of these algorithms in Python and MATLAB. Astronomical radio signals are subjected to phase dispersion while traveling through the interstellar medium. To optimally detect a short-duration signal within a frequency band, we have to precisely compensate for the unknown pulse dispersion, which is a computationally demanding task. We present the “fast dispersion measure transform” algorithm for optimal detection of such signals. Our algorithm has a low theoretical complexity of , where N f , N t , and N Δ are the numbers of frequency bins, time bins, and dispersion measure bins, respectively. Unlike previously suggested fast algorithms, our algorithm conserves the sensitivity of brute-force dedispersion. Our tests indicate that this algorithm, running on a standard desktop computer and implemented in a high-level programming language, is already faster than the state-of-the-art dedispersion codes running on graphical processing units (GPUs). We also present a variant of the algorithm that can be efficiently implemented on GPUs. The latter algorithm’s computation and data-transport requirements are similar to those of a two-dimensional fast Fourier transform, indicating that incoherent dedispersion can now be considered a nonissue while planning future surveys. We further present a fast algorithm for sensitive detection of pulses shorter than the dispersive smearing limits of incoherent dedispersion. In typical cases, this algorithm is orders of magnitude faster than enumerating dispersion measures and coherently dedispersing by convolution. We analyze the computational complexity of pulsed signal searches by radio interferometers. We conclude that, using our suggested algorithms, maximally sensitive blind searches for dispersed pulses are feasible using existing facilities. We provide an implementation of these algorithms in Python and MATLAB. Astronomical radio signals are subjected to phase dispersion while traveling through the interstellar medium. To optimally detect a short-duration signal within a frequency band, we have to precisely compensate for the unknown pulse dispersion, which is a computationally demanding task. We present the “fast dispersion measure transform” algorithm for optimal detection of such signals. Our algorithm has a low theoretical complexity of \(2{N}_{f}{N}_{t}+{N}_{t}{N}_{{\rm{\Delta }}}{\mathrm{log}}_{2}({N}_{f})\), where Nf, Nt, and NΔ are the numbers of frequency bins, time bins, and dispersion measure bins, respectively. Unlike previously suggested fast algorithms, our algorithm conserves the sensitivity of brute-force dedispersion. Our tests indicate that this algorithm, running on a standard desktop computer and implemented in a high-level programming language, is already faster than the state-of-the-art dedispersion codes running on graphical processing units (GPUs). We also present a variant of the algorithm that can be efficiently implemented on GPUs. The latter algorithm’s computation and data-transport requirements are similar to those of a two-dimensional fast Fourier transform, indicating that incoherent dedispersion can now be considered a nonissue while planning future surveys. We further present a fast algorithm for sensitive detection of pulses shorter than the dispersive smearing limits of incoherent dedispersion. In typical cases, this algorithm is orders of magnitude faster than enumerating dispersion measures and coherently dedispersing by convolution. We analyze the computational complexity of pulsed signal searches by radio interferometers. We conclude that, using our suggested algorithms, maximally sensitive blind searches for dispersed pulses are feasible using existing facilities. We provide an implementation of these algorithms in Python and MATLAB. ABSTRACT Astronomical radio signals are subjected to phase dispersion while traveling through the interstellar medium. To optimally detect a short-duration signal within a frequency band, we have to precisely compensate for the unknown pulse dispersion, which is a computationally demanding task. We present the "fast dispersion measure transform" algorithm for optimal detection of such signals. Our algorithm has a low theoretical complexity of , where Nf, Nt, and NΔ are the numbers of frequency bins, time bins, and dispersion measure bins, respectively. Unlike previously suggested fast algorithms, our algorithm conserves the sensitivity of brute-force dedispersion. Our tests indicate that this algorithm, running on a standard desktop computer and implemented in a high-level programming language, is already faster than the state-of-the-art dedispersion codes running on graphical processing units (GPUs). We also present a variant of the algorithm that can be efficiently implemented on GPUs. The latter algorithm's computation and data-transport requirements are similar to those of a two-dimensional fast Fourier transform, indicating that incoherent dedispersion can now be considered a nonissue while planning future surveys. We further present a fast algorithm for sensitive detection of pulses shorter than the dispersive smearing limits of incoherent dedispersion. In typical cases, this algorithm is orders of magnitude faster than enumerating dispersion measures and coherently dedispersing by convolution. We analyze the computational complexity of pulsed signal searches by radio interferometers. We conclude that, using our suggested algorithms, maximally sensitive blind searches for dispersed pulses are feasible using existing facilities. We provide an implementation of these algorithms in Python and MATLAB. |
| Author | Ofek, Eran O. Zackay, Barak |
| Author_xml | – sequence: 1 givenname: Barak surname: Zackay fullname: Zackay, Barak email: bzackay@gmail.com organization: Benoziyo Center for Astrophysics, Weizmann Institute of Science , 76100 Rehovot, , Israel – sequence: 2 givenname: Eran O. orcidid: 0000-0002-6786-8774 surname: Ofek fullname: Ofek, Eran O. email: Eran.ofek@weizmann.ac.il organization: Benoziyo Center for Astrophysics, Weizmann Institute of Science , 76100 Rehovot, , Israel |
| BackLink | https://www.osti.gov/biblio/22869576$$D View this record in Osti.gov |
| BookMark | eNp9kc1unDAUha0qlTpJ-wJZWcq2ZPyHMUvKmBlUxkQGlOwsxmNUohSmQBZ9jz5wIRM1UhdZXfn6fOce6VyCi67vHADXGN1SwYI19qnwGPWDtaD-Gq8x_gBW_5YXYIUQYh6nwcMncDmOj8uThOEK_IkUjOK40lEpYaQ2UCZJGqdSlTDKtrlOy90eJrmGG1nKuExzBfME6miT5vBbpYuygPezZkZhpb6r_F7BTVrcSV0s0r2MikrLry8ORaq2mfTm7x0sZSaLOL-TxcvRVJVSJ1Ln-_mKLj6Dj039NLovr_MKVIks452X5ds0jjLPUsEnj3Ha8GNdC2a5fyTBgR05RQwR1AhrKUEHzsKDwJQ3iDDf0ZBhR5ywDouaHjC9Ajdn336cWjPadnL2h-27ztnJECJ46Af8TXUa-l_PbpzMY_88dHMwQyj3g5BytqjEWWWHfhwH15jZrp7avpuGun0yGJmlKbOUYpZSzNyUwQYvMch_6Glof9bD7_eh2zPU9qe3QO8AfwHC65hG |
| CitedBy_id | crossref_primary_10_1093_mnras_stac960 crossref_primary_10_1146_annurev_astro_031220_010302 crossref_primary_10_1093_mnras_stac2558 crossref_primary_10_1109_LAWP_2019_2894790 crossref_primary_10_3390_universe10040158 crossref_primary_10_3847_1538_3881_aae649 crossref_primary_10_3847_1538_4357_aad188 crossref_primary_10_3847_1538_4365_ab7994 crossref_primary_10_1051_0004_6361_202347356 crossref_primary_10_1051_0004_6361_202348247 crossref_primary_10_3847_1538_3881_aaddff crossref_primary_10_3847_2041_8213_ac242b crossref_primary_10_3847_1538_4357_ac82f5 crossref_primary_10_1017_pasa_2024_121 crossref_primary_10_1109_ACCESS_2019_2933387 crossref_primary_10_3847_1538_4357_aaeb98 crossref_primary_10_1017_pasa_2024_107 crossref_primary_10_1051_0004_6361_202142099 crossref_primary_10_1093_mnras_sty910 crossref_primary_10_1093_mnras_stz804 crossref_primary_10_1093_astrogeo_atab043 crossref_primary_10_1093_mnras_stz748 crossref_primary_10_3847_1538_4357_aa8310 crossref_primary_10_1093_mnras_staa891 crossref_primary_10_1007_s00159_019_0116_6 crossref_primary_10_1017_pasa_2019_1 crossref_primary_10_1126_science_aaw5903 crossref_primary_10_3847_1538_4365_aded18 crossref_primary_10_3847_1538_4365_acfef6 crossref_primary_10_1134_S0038094617040013 crossref_primary_10_3847_1538_4357_ad0964 crossref_primary_10_1093_mnras_stad1740 crossref_primary_10_1146_annurev_astro_013125_122023 crossref_primary_10_1088_1538_3873_ac8f71 crossref_primary_10_3847_1538_4357_adeb51 crossref_primary_10_3847_1538_4357_aadf31 crossref_primary_10_3847_2041_8213_aa71ff crossref_primary_10_1088_1538_3873_ac0bcc crossref_primary_10_3847_2041_8213_ab5b08 |
| Cites_doi | 10.1137/S0097539793256673 10.1088/0004-637X/732/1/14 10.1051/0004-6361/200913121 10.1088/2041-8205/789/2/L26 10.1016/0031-3203(96)00015-5 10.1086/305790 10.1093/mnras/stu2650 10.1088/2041-8205/780/1/L3 10.1038/nature01477 10.1088/0067-0049/205/1/4 10.1111/j.1365-2966.2011.19426.x 10.1088/0067-0049/196/2/16 10.1071/AS10021 10.1086/378232 10.1111/j.1365-2966.2012.20622.x 10.1088/0004-637X/776/2/125 10.1088/0004-637X/807/1/16 10.1093/mnras/279.4.1235 10.1126/science.1147532 10.1086/378231 10.1086/382680 10.1126/science.1236789 10.1088/0004-637X/735/2/98 10.1142/S2251171714500044 |
| ContentType | Journal Article |
| Copyright | 2017. The American Astronomical Society. All rights reserved. Copyright IOP Publishing Jan 20, 2017 |
| Copyright_xml | – notice: 2017. The American Astronomical Society. All rights reserved. – notice: Copyright IOP Publishing Jan 20, 2017 |
| DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M OTOTI |
| DOI | 10.3847/1538-4357/835/1/11 |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace OSTI.GOV |
| DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | CrossRef Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Astronomy & Astrophysics Physics |
| DocumentTitleAlternate | AN ACCURATE AND EFFICIENT ALGORITHM FOR DETECTION OF RADIO BURSTS WITH AN UNKNOWN DISPERSION MEASURE, FOR SINGLE-DISH TELESCOPES AND INTERFEROMETERS |
| EISSN | 1538-4357 |
| ExternalDocumentID | 22869576 10_3847_1538_4357_835_1_11 apjaa50fa |
| GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO AALHV ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS EJD F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX AEINN CITATION 7TG 8FD H8D KL. L7M ABPTK OTOTI |
| ID | FETCH-LOGICAL-c386t-463f6daa84c65d27b4d6304020f8cc320b649b8136f0245e3941e2e8ce18a3b13 |
| IEDL.DBID | O3W |
| ISICitedReferencesCount | 36 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000393455400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0004-637X |
| IngestDate | Fri May 19 01:46:39 EDT 2023 Wed Aug 13 11:25:10 EDT 2025 Sat Nov 29 06:20:21 EST 2025 Tue Nov 18 20:41:50 EST 2025 Wed Aug 21 03:33:03 EDT 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c386t-463f6daa84c65d27b4d6304020f8cc320b649b8136f0245e3941e2e8ce18a3b13 |
| Notes | ApJ97140 Instrumentation, Software, Laboratory Astrophysics, and Data ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6786-8774 |
| OpenAccessLink | https://iopscience.iop.org/article/10.3847/1538-4357/835/1/11/pdf |
| PQID | 2365793646 |
| PQPubID | 4562441 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_3847_1538_4357_835_1_11 iop_journals_10_3847_1538_4357_835_1_11 proquest_journals_2365793646 osti_scitechconnect_22869576 crossref_primary_10_3847_1538_4357_835_1_11 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-01-20 |
| PublicationDateYYYYMMDD | 2017-01-20 |
| PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationPlace | Philadelphia |
| PublicationPlace_xml | – name: Philadelphia – name: United States |
| PublicationTitle | The Astrophysical journal |
| PublicationTitleAbbrev | APJ |
| PublicationTitleAlternate | Astrophys. J |
| PublicationYear | 2017 |
| Publisher | The American Astronomical Society IOP Publishing |
| Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
| References | Spitler (apjaa50fabib23) 2014; 780 Gotz (apjaa50fabib10) 1996; 29 Ofek (apjaa50fabib21) 2014 Hankins (apjaa50fabib11) 2003; 422 Taylor (apjaa50fabib24) 1974; 15 Kramer (apjaa50fabib13) 1998; 501 van Straten (apjaa50fabib28) 2011; 28 Petroff (apjaa50fabib22) 2014; 789 Thornton (apjaa50fabib26) 2013; 341 Keane (apjaa50fabib12) 2015; 447 Law (apjaa50fabib14) 2015; 807 Clarke (apjaa50fabib8) 2013; 205 Barsdell (apjaa50fabib2) 2012; 422 Cordes (apjaa50fabib9) 2003; 596 Manchester (apjaa50fabib19) 1996; 279 Bhat (apjaa50fabib4) 2011; 732 Bannister (apjaa50fabib1) 2011; 196 Lorimer (apjaa50fabib15) 2007; 318 Lorimer (apjaa50fabib16) 2012 van Leeuwen (apjaa50fabib27) 2010; 509 Brady (apjaa50fabib5) 1998; 27 Thompson (apjaa50fabib25) 2011; 735 Bhat (apjaa50fabib3) 2004; 605 Macquart (apjaa50fabib17) 2013; 776 Magro (apjaa50fabib18) 2011; 417 Clarke (apjaa50fabib7) 2014; 3 McLaughlin (apjaa50fabib20) 2003; 596 Champion (apjaa50fabib6) 2015 |
| References_xml | – volume: 27 start-page: 107 year: 1998 ident: apjaa50fabib5 publication-title: SIAM Journal on Computing doi: 10.1137/S0097539793256673 – volume: 732 start-page: 14 year: 2011 ident: apjaa50fabib4 publication-title: ApJ doi: 10.1088/0004-637X/732/1/14 – start-page: 2012 year: 2012 ident: apjaa50fabib16 – volume: 509 start-page: A7 year: 2010 ident: apjaa50fabib27 publication-title: A&A doi: 10.1051/0004-6361/200913121 – volume: 789 start-page: L26 year: 2014 ident: apjaa50fabib22 publication-title: ApJL doi: 10.1088/2041-8205/789/2/L26 – volume: 29 start-page: 711 year: 1996 ident: apjaa50fabib10 publication-title: Pattern Recognition doi: 10.1016/0031-3203(96)00015-5 – year: 2014 ident: apjaa50fabib21 publication-title: MATLAB package for astronomy and astrophysics, Astrophysics Source Code Library – volume: 501 start-page: 270 year: 1998 ident: apjaa50fabib13 publication-title: ApJ doi: 10.1086/305790 – volume: 447 start-page: 2852 year: 2015 ident: apjaa50fabib12 publication-title: MNRAS doi: 10.1093/mnras/stu2650 – volume: 780 start-page: LL3 year: 2014 ident: apjaa50fabib23 publication-title: ApJL doi: 10.1088/2041-8205/780/1/L3 – volume: 422 start-page: 141 year: 2003 ident: apjaa50fabib11 publication-title: Natur doi: 10.1038/nature01477 – volume: 205 start-page: 4 year: 2013 ident: apjaa50fabib8 publication-title: ApJS doi: 10.1088/0067-0049/205/1/4 – volume: 417 start-page: 2642 year: 2011 ident: apjaa50fabib18 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.19426.x – volume: 196 start-page: 16 year: 2011 ident: apjaa50fabib1 publication-title: ApJS doi: 10.1088/0067-0049/196/2/16 – volume: 28 start-page: 1 year: 2011 ident: apjaa50fabib28 publication-title: PASA doi: 10.1071/AS10021 – year: 2015 ident: apjaa50fabib6 – volume: 596 start-page: 982 year: 2003 ident: apjaa50fabib20 publication-title: ApJ doi: 10.1086/378232 – volume: 422 start-page: 379 year: 2012 ident: apjaa50fabib2 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.20622.x – volume: 776 start-page: 125 year: 2013 ident: apjaa50fabib17 publication-title: ApJ doi: 10.1088/0004-637X/776/2/125 – volume: 15 start-page: 367 year: 1974 ident: apjaa50fabib24 publication-title: A&AS – volume: 807 start-page: 16 year: 2015 ident: apjaa50fabib14 publication-title: ApJ doi: 10.1088/0004-637X/807/1/16 – volume: 279 start-page: 1235 year: 1996 ident: apjaa50fabib19 publication-title: MNRAS doi: 10.1093/mnras/279.4.1235 – volume: 318 start-page: 777 year: 2007 ident: apjaa50fabib15 publication-title: Sci doi: 10.1126/science.1147532 – volume: 596 start-page: 1142 year: 2003 ident: apjaa50fabib9 publication-title: ApJ doi: 10.1086/378231 – volume: 605 start-page: 759 year: 2004 ident: apjaa50fabib3 publication-title: ApJ doi: 10.1086/382680 – volume: 341 start-page: 53 year: 2013 ident: apjaa50fabib26 publication-title: Sci doi: 10.1126/science.1236789 – volume: 735 start-page: 98 year: 2011 ident: apjaa50fabib25 publication-title: ApJ doi: 10.1088/0004-637X/735/2/98 – volume: 3 start-page: 50004 year: 2014 ident: apjaa50fabib7 publication-title: JAI doi: 10.1142/S2251171714500044 |
| SSID | ssj0004299 |
| Score | 2.4668553 |
| Snippet | ABSTRACT Astronomical radio signals are subjected to phase dispersion while traveling through the interstellar medium. To optimally detect a short-duration... Astronomical radio signals are subjected to phase dispersion while traveling through the interstellar medium. To optimally detect a short-duration signal... |
| SourceID | osti proquest crossref iop |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 11 |
| SubjectTerms | ALGORITHMS Astrophysics ASTROPHYSICS, COSMOLOGY AND ASTRONOMY Bins CALCULATION METHODS Complexity Convolution DATA ANALYSIS Data transmission DETECTION Dispersion DISPERSIONS Fast Fourier transformations FOURIER TRANSFORMATION Fourier transforms Frequencies Galling Graphics processing units High level languages INTERFEROMETERS Interstellar matter Interstellar medium methods: data analysis methods: statistical Optimization Personal computers Programming languages Radio bursts Radio interferometers Radio signals Radio telescopes Searching SENSITIVITY TELESCOPES TWO-DIMENSIONAL CALCULATIONS |
| Title | AN ACCURATE AND EFFICIENT ALGORITHM FOR DETECTION OF RADIO BURSTS WITH AN UNKNOWN DISPERSION MEASURE, FOR SINGLE-DISH TELESCOPES AND INTERFEROMETERS |
| URI | https://iopscience.iop.org/article/10.3847/1538-4357/835/1/11 https://www.proquest.com/docview/2365793646 https://www.osti.gov/biblio/22869576 |
| Volume | 835 |
| WOSCitedRecordID | wos000393455400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 1538-4357 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004299 issn: 0004-637X databaseCode: O3W dateStart: 19950701 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1538-4357 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004299 issn: 0004-637X databaseCode: M~E dateStart: 18950101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYAIkXPgbTBmPyA4IHCI0_6iSPoXXXijapkpT2LUqcRELa2mktSLzwV_AHc-dkTAgxIfFmyWdflLv73Z3juxDyqmz6pWiMcPrC8xxZ1K4TlB4HXa6qBjs-FbbjzaepF0X-ahXMu7s5thZmc9lB_3sYto2C21eI9i0AS3vWRsHLez2IHnqsh5W9d4XfV6jmsVjelEXyoIt-paOEt2prZv6yx29-aQ94A0ZvwMr-wGjreEaP_vORH5OHXcRJw5b4CblTrw_IUbjFM_DNxTf6mtpxe8SxPSD35-3oKfkRRjQcDBZJmGkaRkMKQe0ED6UyGk7P4mSSjWcUskg61Jm2l1FoPKJJOJzE9MMiSbOULoEGltJF9DGKlxHFyyo6QQCnMw2Qnuh3dod0Ep1NtQPTY5rpqU4H8Vynlqlt2jvSSTwDLkn6jCxGOhuMne4vDo4Rvto5UolGVUXhS6P6FfdKWSnhYtra-MYI7pZKBqXPhGrwM3AtAslqXvumZn4hSiYOyf56s66PCGXKNG4pWVDVXFZeE4DXcAtsGgbIVFXuMWHXMsxN1-Ic_7RxnkOqg4LIURA5CiIHQeQM8p9j8vbXmsu2wcet1G9Axnln59tbKU9QfXJQDezGa_DaktnlnPsqgBwPpq_V6mY3LlQf8FJJ9fyf-bwgDzhGGi4DwDsh-7urL_VLcs983X3eXp2Svdl3fWrN4ifQsPkt |
| linkProvider | IOP Publishing |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbY5SEuPBbQLizgA4IDhMRx4iTH0LrbaNOkSlLam5XYiYQEbbUtSPwPfjBjJ8sKIVYcuFmKH1Fm5psZZ_wZoVdN5ze0k9TyaRBYXt06VtQELuiyUp1mfKoN483HNMiycLWK5kM1oTkLs9kO0P8emj1RcP8JtX1TwFLb2Ch4-cCG6MEmNiH2VnUH6KZPfapvb8jp8upopBsNEbBnMRqs-nMzf5nnN990AOsDTm_A0v7AaeN8Jvf_w2s_QPeGyBPH_YCH6Ea7PkLH8U7vhW--fMevsWn3Wx27I3R73rceoR9xhuPRaFHEFcdxNsYQ3CZ6c6rCcXqWF0k1nWHIJvGYV9wUpeB8got4nOT4w6IoqxIvoQ8MxYvsPMuXGdZFK7zQQI5nHKC94O_MDGWSnaXcgsdTXPGUl6N8zkuzqCHvnfAin8EqRfkYLSa8Gk2t4TYHS9KQ7S2P0Y6pug49yXzlBo2nGHV0-tqFUlLXaZgXNSGhrNO_g1saeaR121C2JKxpQ-gTdLjerNtjhAmTndN4JFKt66mgi8B7OLUmDwOEUso5QeRSjkIOVOf6xo3PAlIeLQyhhSG0MAQIQxDIg07Q219jtj3Rx7W934CcxWDvu2t7nmoVEqAempVX6vIluReuG7IIcj14fKlaV7O5lPmAm8xjT_95nZfoznw8EWmSnT9Dd10dfDgEMPAUHe4vvrbP0S35bf9pd_HC2MdPTeP9Ww |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AN+ACCURATE+AND+EFFICIENT+ALGORITHM+FOR+DETECTION+OF+RADIO+BURSTS+WITH+AN+UNKNOWN+DISPERSION+MEASURE%2C+FOR+SINGLE-DISH+TELESCOPES+AND+INTERFEROMETERS&rft.jtitle=The+Astrophysical+journal&rft.au=Zackay%2C+Barak&rft.au=Ofek%2C+Eran+O.&rft.date=2017-01-20&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=835&rft.issue=1&rft.spage=11&rft_id=info:doi/10.3847%2F1538-4357%2F835%2F1%2F11&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_835_1_11 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |