AN ACCURATE AND EFFICIENT ALGORITHM FOR DETECTION OF RADIO BURSTS WITH AN UNKNOWN DISPERSION MEASURE, FOR SINGLE-DISH TELESCOPES AND INTERFEROMETERS

ABSTRACT Astronomical radio signals are subjected to phase dispersion while traveling through the interstellar medium. To optimally detect a short-duration signal within a frequency band, we have to precisely compensate for the unknown pulse dispersion, which is a computationally demanding task. We...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Astrophysical journal Ročník 835; číslo 1; s. 11 - 23
Hlavní autoři: Zackay, Barak, Ofek, Eran O.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia The American Astronomical Society 20.01.2017
IOP Publishing
Témata:
ISSN:0004-637X, 1538-4357
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ABSTRACT Astronomical radio signals are subjected to phase dispersion while traveling through the interstellar medium. To optimally detect a short-duration signal within a frequency band, we have to precisely compensate for the unknown pulse dispersion, which is a computationally demanding task. We present the "fast dispersion measure transform" algorithm for optimal detection of such signals. Our algorithm has a low theoretical complexity of , where Nf, Nt, and NΔ are the numbers of frequency bins, time bins, and dispersion measure bins, respectively. Unlike previously suggested fast algorithms, our algorithm conserves the sensitivity of brute-force dedispersion. Our tests indicate that this algorithm, running on a standard desktop computer and implemented in a high-level programming language, is already faster than the state-of-the-art dedispersion codes running on graphical processing units (GPUs). We also present a variant of the algorithm that can be efficiently implemented on GPUs. The latter algorithm's computation and data-transport requirements are similar to those of a two-dimensional fast Fourier transform, indicating that incoherent dedispersion can now be considered a nonissue while planning future surveys. We further present a fast algorithm for sensitive detection of pulses shorter than the dispersive smearing limits of incoherent dedispersion. In typical cases, this algorithm is orders of magnitude faster than enumerating dispersion measures and coherently dedispersing by convolution. We analyze the computational complexity of pulsed signal searches by radio interferometers. We conclude that, using our suggested algorithms, maximally sensitive blind searches for dispersed pulses are feasible using existing facilities. We provide an implementation of these algorithms in Python and MATLAB.
AbstractList Astronomical radio signals are subjected to phase dispersion while traveling through the interstellar medium. To optimally detect a short-duration signal within a frequency band, we have to precisely compensate for the unknown pulse dispersion, which is a computationally demanding task. We present the “fast dispersion measure transform” algorithm for optimal detection of such signals. Our algorithm has a low theoretical complexity of 2N{sub f}N{sub t}+N{sub t}N{sub Δ}log{sub 2}(N{sub f}), where N{sub f}, N{sub t}, and N{sub Δ} are the numbers of frequency bins, time bins, and dispersion measure bins, respectively. Unlike previously suggested fast algorithms, our algorithm conserves the sensitivity of brute-force dedispersion. Our tests indicate that this algorithm, running on a standard desktop computer and implemented in a high-level programming language, is already faster than the state-of-the-art dedispersion codes running on graphical processing units (GPUs). We also present a variant of the algorithm that can be efficiently implemented on GPUs. The latter algorithm’s computation and data-transport requirements are similar to those of a two-dimensional fast Fourier transform, indicating that incoherent dedispersion can now be considered a nonissue while planning future surveys. We further present a fast algorithm for sensitive detection of pulses shorter than the dispersive smearing limits of incoherent dedispersion. In typical cases, this algorithm is orders of magnitude faster than enumerating dispersion measures and coherently dedispersing by convolution. We analyze the computational complexity of pulsed signal searches by radio interferometers. We conclude that, using our suggested algorithms, maximally sensitive blind searches for dispersed pulses are feasible using existing facilities. We provide an implementation of these algorithms in Python and MATLAB.
Astronomical radio signals are subjected to phase dispersion while traveling through the interstellar medium. To optimally detect a short-duration signal within a frequency band, we have to precisely compensate for the unknown pulse dispersion, which is a computationally demanding task. We present the “fast dispersion measure transform” algorithm for optimal detection of such signals. Our algorithm has a low theoretical complexity of , where N f , N t , and N Δ are the numbers of frequency bins, time bins, and dispersion measure bins, respectively. Unlike previously suggested fast algorithms, our algorithm conserves the sensitivity of brute-force dedispersion. Our tests indicate that this algorithm, running on a standard desktop computer and implemented in a high-level programming language, is already faster than the state-of-the-art dedispersion codes running on graphical processing units (GPUs). We also present a variant of the algorithm that can be efficiently implemented on GPUs. The latter algorithm’s computation and data-transport requirements are similar to those of a two-dimensional fast Fourier transform, indicating that incoherent dedispersion can now be considered a nonissue while planning future surveys. We further present a fast algorithm for sensitive detection of pulses shorter than the dispersive smearing limits of incoherent dedispersion. In typical cases, this algorithm is orders of magnitude faster than enumerating dispersion measures and coherently dedispersing by convolution. We analyze the computational complexity of pulsed signal searches by radio interferometers. We conclude that, using our suggested algorithms, maximally sensitive blind searches for dispersed pulses are feasible using existing facilities. We provide an implementation of these algorithms in Python and MATLAB.
Astronomical radio signals are subjected to phase dispersion while traveling through the interstellar medium. To optimally detect a short-duration signal within a frequency band, we have to precisely compensate for the unknown pulse dispersion, which is a computationally demanding task. We present the “fast dispersion measure transform” algorithm for optimal detection of such signals. Our algorithm has a low theoretical complexity of \(2{N}_{f}{N}_{t}+{N}_{t}{N}_{{\rm{\Delta }}}{\mathrm{log}}_{2}({N}_{f})\), where Nf, Nt, and NΔ are the numbers of frequency bins, time bins, and dispersion measure bins, respectively. Unlike previously suggested fast algorithms, our algorithm conserves the sensitivity of brute-force dedispersion. Our tests indicate that this algorithm, running on a standard desktop computer and implemented in a high-level programming language, is already faster than the state-of-the-art dedispersion codes running on graphical processing units (GPUs). We also present a variant of the algorithm that can be efficiently implemented on GPUs. The latter algorithm’s computation and data-transport requirements are similar to those of a two-dimensional fast Fourier transform, indicating that incoherent dedispersion can now be considered a nonissue while planning future surveys. We further present a fast algorithm for sensitive detection of pulses shorter than the dispersive smearing limits of incoherent dedispersion. In typical cases, this algorithm is orders of magnitude faster than enumerating dispersion measures and coherently dedispersing by convolution. We analyze the computational complexity of pulsed signal searches by radio interferometers. We conclude that, using our suggested algorithms, maximally sensitive blind searches for dispersed pulses are feasible using existing facilities. We provide an implementation of these algorithms in Python and MATLAB.
ABSTRACT Astronomical radio signals are subjected to phase dispersion while traveling through the interstellar medium. To optimally detect a short-duration signal within a frequency band, we have to precisely compensate for the unknown pulse dispersion, which is a computationally demanding task. We present the "fast dispersion measure transform" algorithm for optimal detection of such signals. Our algorithm has a low theoretical complexity of , where Nf, Nt, and NΔ are the numbers of frequency bins, time bins, and dispersion measure bins, respectively. Unlike previously suggested fast algorithms, our algorithm conserves the sensitivity of brute-force dedispersion. Our tests indicate that this algorithm, running on a standard desktop computer and implemented in a high-level programming language, is already faster than the state-of-the-art dedispersion codes running on graphical processing units (GPUs). We also present a variant of the algorithm that can be efficiently implemented on GPUs. The latter algorithm's computation and data-transport requirements are similar to those of a two-dimensional fast Fourier transform, indicating that incoherent dedispersion can now be considered a nonissue while planning future surveys. We further present a fast algorithm for sensitive detection of pulses shorter than the dispersive smearing limits of incoherent dedispersion. In typical cases, this algorithm is orders of magnitude faster than enumerating dispersion measures and coherently dedispersing by convolution. We analyze the computational complexity of pulsed signal searches by radio interferometers. We conclude that, using our suggested algorithms, maximally sensitive blind searches for dispersed pulses are feasible using existing facilities. We provide an implementation of these algorithms in Python and MATLAB.
Author Ofek, Eran O.
Zackay, Barak
Author_xml – sequence: 1
  givenname: Barak
  surname: Zackay
  fullname: Zackay, Barak
  email: bzackay@gmail.com
  organization: Benoziyo Center for Astrophysics, Weizmann Institute of Science , 76100 Rehovot, , Israel
– sequence: 2
  givenname: Eran O.
  orcidid: 0000-0002-6786-8774
  surname: Ofek
  fullname: Ofek, Eran O.
  email: Eran.ofek@weizmann.ac.il
  organization: Benoziyo Center for Astrophysics, Weizmann Institute of Science , 76100 Rehovot, , Israel
BackLink https://www.osti.gov/biblio/22869576$$D View this record in Osti.gov
BookMark eNp9kc1unDAUha0qlTpJ-wJZWcq2ZPyHMUvKmBlUxkQGlOwsxmNUohSmQBZ9jz5wIRM1UhdZXfn6fOce6VyCi67vHADXGN1SwYI19qnwGPWDtaD-Gq8x_gBW_5YXYIUQYh6nwcMncDmOj8uThOEK_IkUjOK40lEpYaQ2UCZJGqdSlTDKtrlOy90eJrmGG1nKuExzBfME6miT5vBbpYuygPezZkZhpb6r_F7BTVrcSV0s0r2MikrLry8ORaq2mfTm7x0sZSaLOL-TxcvRVJVSJ1Ln-_mKLj6Dj039NLovr_MKVIks452X5ds0jjLPUsEnj3Ha8GNdC2a5fyTBgR05RQwR1AhrKUEHzsKDwJQ3iDDf0ZBhR5ywDouaHjC9Ajdn336cWjPadnL2h-27ztnJECJ46Af8TXUa-l_PbpzMY_88dHMwQyj3g5BytqjEWWWHfhwH15jZrp7avpuGun0yGJmlKbOUYpZSzNyUwQYvMch_6Glof9bD7_eh2zPU9qe3QO8AfwHC65hG
CitedBy_id crossref_primary_10_1093_mnras_stac960
crossref_primary_10_1146_annurev_astro_031220_010302
crossref_primary_10_1093_mnras_stac2558
crossref_primary_10_1109_LAWP_2019_2894790
crossref_primary_10_3390_universe10040158
crossref_primary_10_3847_1538_3881_aae649
crossref_primary_10_3847_1538_4357_aad188
crossref_primary_10_3847_1538_4365_ab7994
crossref_primary_10_1051_0004_6361_202347356
crossref_primary_10_1051_0004_6361_202348247
crossref_primary_10_3847_1538_3881_aaddff
crossref_primary_10_3847_2041_8213_ac242b
crossref_primary_10_3847_1538_4357_ac82f5
crossref_primary_10_1017_pasa_2024_121
crossref_primary_10_1109_ACCESS_2019_2933387
crossref_primary_10_3847_1538_4357_aaeb98
crossref_primary_10_1017_pasa_2024_107
crossref_primary_10_1051_0004_6361_202142099
crossref_primary_10_1093_mnras_sty910
crossref_primary_10_1093_mnras_stz804
crossref_primary_10_1093_astrogeo_atab043
crossref_primary_10_1093_mnras_stz748
crossref_primary_10_3847_1538_4357_aa8310
crossref_primary_10_1093_mnras_staa891
crossref_primary_10_1007_s00159_019_0116_6
crossref_primary_10_1017_pasa_2019_1
crossref_primary_10_1126_science_aaw5903
crossref_primary_10_3847_1538_4365_aded18
crossref_primary_10_3847_1538_4365_acfef6
crossref_primary_10_1134_S0038094617040013
crossref_primary_10_3847_1538_4357_ad0964
crossref_primary_10_1093_mnras_stad1740
crossref_primary_10_1146_annurev_astro_013125_122023
crossref_primary_10_1088_1538_3873_ac8f71
crossref_primary_10_3847_1538_4357_adeb51
crossref_primary_10_3847_1538_4357_aadf31
crossref_primary_10_3847_2041_8213_aa71ff
crossref_primary_10_1088_1538_3873_ac0bcc
crossref_primary_10_3847_2041_8213_ab5b08
Cites_doi 10.1137/S0097539793256673
10.1088/0004-637X/732/1/14
10.1051/0004-6361/200913121
10.1088/2041-8205/789/2/L26
10.1016/0031-3203(96)00015-5
10.1086/305790
10.1093/mnras/stu2650
10.1088/2041-8205/780/1/L3
10.1038/nature01477
10.1088/0067-0049/205/1/4
10.1111/j.1365-2966.2011.19426.x
10.1088/0067-0049/196/2/16
10.1071/AS10021
10.1086/378232
10.1111/j.1365-2966.2012.20622.x
10.1088/0004-637X/776/2/125
10.1088/0004-637X/807/1/16
10.1093/mnras/279.4.1235
10.1126/science.1147532
10.1086/378231
10.1086/382680
10.1126/science.1236789
10.1088/0004-637X/735/2/98
10.1142/S2251171714500044
ContentType Journal Article
Copyright 2017. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Jan 20, 2017
Copyright_xml – notice: 2017. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Jan 20, 2017
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
OTOTI
DOI 10.3847/1538-4357/835/1/11
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
CrossRef
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
DocumentTitleAlternate AN ACCURATE AND EFFICIENT ALGORITHM FOR DETECTION OF RADIO BURSTS WITH AN UNKNOWN DISPERSION MEASURE, FOR SINGLE-DISH TELESCOPES AND INTERFEROMETERS
EISSN 1538-4357
ExternalDocumentID 22869576
10_3847_1538_4357_835_1_11
apjaa50fa
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
AALHV
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
EJD
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
AEINN
CITATION
7TG
8FD
H8D
KL.
L7M
ABPTK
OTOTI
ID FETCH-LOGICAL-c386t-463f6daa84c65d27b4d6304020f8cc320b649b8136f0245e3941e2e8ce18a3b13
IEDL.DBID O3W
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000393455400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0004-637X
IngestDate Fri May 19 01:46:39 EDT 2023
Wed Aug 13 11:25:10 EDT 2025
Sat Nov 29 06:20:21 EST 2025
Tue Nov 18 20:41:50 EST 2025
Wed Aug 21 03:33:03 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c386t-463f6daa84c65d27b4d6304020f8cc320b649b8136f0245e3941e2e8ce18a3b13
Notes ApJ97140
Instrumentation, Software, Laboratory Astrophysics, and Data
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6786-8774
OpenAccessLink https://iopscience.iop.org/article/10.3847/1538-4357/835/1/11/pdf
PQID 2365793646
PQPubID 4562441
PageCount 13
ParticipantIDs crossref_citationtrail_10_3847_1538_4357_835_1_11
iop_journals_10_3847_1538_4357_835_1_11
proquest_journals_2365793646
osti_scitechconnect_22869576
crossref_primary_10_3847_1538_4357_835_1_11
PublicationCentury 2000
PublicationDate 2017-01-20
PublicationDateYYYYMMDD 2017-01-20
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-20
  day: 20
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
– name: United States
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2017
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Spitler (apjaa50fabib23) 2014; 780
Gotz (apjaa50fabib10) 1996; 29
Ofek (apjaa50fabib21) 2014
Hankins (apjaa50fabib11) 2003; 422
Taylor (apjaa50fabib24) 1974; 15
Kramer (apjaa50fabib13) 1998; 501
van Straten (apjaa50fabib28) 2011; 28
Petroff (apjaa50fabib22) 2014; 789
Thornton (apjaa50fabib26) 2013; 341
Keane (apjaa50fabib12) 2015; 447
Law (apjaa50fabib14) 2015; 807
Clarke (apjaa50fabib8) 2013; 205
Barsdell (apjaa50fabib2) 2012; 422
Cordes (apjaa50fabib9) 2003; 596
Manchester (apjaa50fabib19) 1996; 279
Bhat (apjaa50fabib4) 2011; 732
Bannister (apjaa50fabib1) 2011; 196
Lorimer (apjaa50fabib15) 2007; 318
Lorimer (apjaa50fabib16) 2012
van Leeuwen (apjaa50fabib27) 2010; 509
Brady (apjaa50fabib5) 1998; 27
Thompson (apjaa50fabib25) 2011; 735
Bhat (apjaa50fabib3) 2004; 605
Macquart (apjaa50fabib17) 2013; 776
Magro (apjaa50fabib18) 2011; 417
Clarke (apjaa50fabib7) 2014; 3
McLaughlin (apjaa50fabib20) 2003; 596
Champion (apjaa50fabib6) 2015
References_xml – volume: 27
  start-page: 107
  year: 1998
  ident: apjaa50fabib5
  publication-title: SIAM Journal on Computing
  doi: 10.1137/S0097539793256673
– volume: 732
  start-page: 14
  year: 2011
  ident: apjaa50fabib4
  publication-title: ApJ
  doi: 10.1088/0004-637X/732/1/14
– start-page: 2012
  year: 2012
  ident: apjaa50fabib16
– volume: 509
  start-page: A7
  year: 2010
  ident: apjaa50fabib27
  publication-title: A&A
  doi: 10.1051/0004-6361/200913121
– volume: 789
  start-page: L26
  year: 2014
  ident: apjaa50fabib22
  publication-title: ApJL
  doi: 10.1088/2041-8205/789/2/L26
– volume: 29
  start-page: 711
  year: 1996
  ident: apjaa50fabib10
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(96)00015-5
– year: 2014
  ident: apjaa50fabib21
  publication-title: MATLAB package for astronomy and astrophysics, Astrophysics Source Code Library
– volume: 501
  start-page: 270
  year: 1998
  ident: apjaa50fabib13
  publication-title: ApJ
  doi: 10.1086/305790
– volume: 447
  start-page: 2852
  year: 2015
  ident: apjaa50fabib12
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2650
– volume: 780
  start-page: LL3
  year: 2014
  ident: apjaa50fabib23
  publication-title: ApJL
  doi: 10.1088/2041-8205/780/1/L3
– volume: 422
  start-page: 141
  year: 2003
  ident: apjaa50fabib11
  publication-title: Natur
  doi: 10.1038/nature01477
– volume: 205
  start-page: 4
  year: 2013
  ident: apjaa50fabib8
  publication-title: ApJS
  doi: 10.1088/0067-0049/205/1/4
– volume: 417
  start-page: 2642
  year: 2011
  ident: apjaa50fabib18
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.19426.x
– volume: 196
  start-page: 16
  year: 2011
  ident: apjaa50fabib1
  publication-title: ApJS
  doi: 10.1088/0067-0049/196/2/16
– volume: 28
  start-page: 1
  year: 2011
  ident: apjaa50fabib28
  publication-title: PASA
  doi: 10.1071/AS10021
– year: 2015
  ident: apjaa50fabib6
– volume: 596
  start-page: 982
  year: 2003
  ident: apjaa50fabib20
  publication-title: ApJ
  doi: 10.1086/378232
– volume: 422
  start-page: 379
  year: 2012
  ident: apjaa50fabib2
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.20622.x
– volume: 776
  start-page: 125
  year: 2013
  ident: apjaa50fabib17
  publication-title: ApJ
  doi: 10.1088/0004-637X/776/2/125
– volume: 15
  start-page: 367
  year: 1974
  ident: apjaa50fabib24
  publication-title: A&AS
– volume: 807
  start-page: 16
  year: 2015
  ident: apjaa50fabib14
  publication-title: ApJ
  doi: 10.1088/0004-637X/807/1/16
– volume: 279
  start-page: 1235
  year: 1996
  ident: apjaa50fabib19
  publication-title: MNRAS
  doi: 10.1093/mnras/279.4.1235
– volume: 318
  start-page: 777
  year: 2007
  ident: apjaa50fabib15
  publication-title: Sci
  doi: 10.1126/science.1147532
– volume: 596
  start-page: 1142
  year: 2003
  ident: apjaa50fabib9
  publication-title: ApJ
  doi: 10.1086/378231
– volume: 605
  start-page: 759
  year: 2004
  ident: apjaa50fabib3
  publication-title: ApJ
  doi: 10.1086/382680
– volume: 341
  start-page: 53
  year: 2013
  ident: apjaa50fabib26
  publication-title: Sci
  doi: 10.1126/science.1236789
– volume: 735
  start-page: 98
  year: 2011
  ident: apjaa50fabib25
  publication-title: ApJ
  doi: 10.1088/0004-637X/735/2/98
– volume: 3
  start-page: 50004
  year: 2014
  ident: apjaa50fabib7
  publication-title: JAI
  doi: 10.1142/S2251171714500044
SSID ssj0004299
Score 2.4668553
Snippet ABSTRACT Astronomical radio signals are subjected to phase dispersion while traveling through the interstellar medium. To optimally detect a short-duration...
Astronomical radio signals are subjected to phase dispersion while traveling through the interstellar medium. To optimally detect a short-duration signal...
SourceID osti
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11
SubjectTerms ALGORITHMS
Astrophysics
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
Bins
CALCULATION METHODS
Complexity
Convolution
DATA ANALYSIS
Data transmission
DETECTION
Dispersion
DISPERSIONS
Fast Fourier transformations
FOURIER TRANSFORMATION
Fourier transforms
Frequencies
Galling
Graphics processing units
High level languages
INTERFEROMETERS
Interstellar matter
Interstellar medium
methods: data analysis
methods: statistical
Optimization
Personal computers
Programming languages
Radio bursts
Radio interferometers
Radio signals
Radio telescopes
Searching
SENSITIVITY
TELESCOPES
TWO-DIMENSIONAL CALCULATIONS
Title AN ACCURATE AND EFFICIENT ALGORITHM FOR DETECTION OF RADIO BURSTS WITH AN UNKNOWN DISPERSION MEASURE, FOR SINGLE-DISH TELESCOPES AND INTERFEROMETERS
URI https://iopscience.iop.org/article/10.3847/1538-4357/835/1/11
https://www.proquest.com/docview/2365793646
https://www.osti.gov/biblio/22869576
Volume 835
WOSCitedRecordID wos000393455400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1538-4357
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004299
  issn: 0004-637X
  databaseCode: O3W
  dateStart: 19950701
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1538-4357
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004299
  issn: 0004-637X
  databaseCode: M~E
  dateStart: 18950101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYAIkXPgbTBmPyA4IHCI0_6iSPoXXXijapkpT2LUqcRELa2mktSLzwV_AHc-dkTAgxIfFmyWdflLv73Z3juxDyqmz6pWiMcPrC8xxZ1K4TlB4HXa6qBjs-FbbjzaepF0X-ahXMu7s5thZmc9lB_3sYto2C21eI9i0AS3vWRsHLez2IHnqsh5W9d4XfV6jmsVjelEXyoIt-paOEt2prZv6yx29-aQ94A0ZvwMr-wGjreEaP_vORH5OHXcRJw5b4CblTrw_IUbjFM_DNxTf6mtpxe8SxPSD35-3oKfkRRjQcDBZJmGkaRkMKQe0ED6UyGk7P4mSSjWcUskg61Jm2l1FoPKJJOJzE9MMiSbOULoEGltJF9DGKlxHFyyo6QQCnMw2Qnuh3dod0Ep1NtQPTY5rpqU4H8Vynlqlt2jvSSTwDLkn6jCxGOhuMne4vDo4Rvto5UolGVUXhS6P6FfdKWSnhYtra-MYI7pZKBqXPhGrwM3AtAslqXvumZn4hSiYOyf56s66PCGXKNG4pWVDVXFZeE4DXcAtsGgbIVFXuMWHXMsxN1-Ic_7RxnkOqg4LIURA5CiIHQeQM8p9j8vbXmsu2wcet1G9Axnln59tbKU9QfXJQDezGa_DaktnlnPsqgBwPpq_V6mY3LlQf8FJJ9fyf-bwgDzhGGi4DwDsh-7urL_VLcs983X3eXp2Svdl3fWrN4ifQsPkt
linkProvider IOP Publishing
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbY5SEuPBbQLizgA4IDhMRx4iTH0LrbaNOkSlLam5XYiYQEbbUtSPwPfjBjJ8sKIVYcuFmKH1Fm5psZZ_wZoVdN5ze0k9TyaRBYXt06VtQELuiyUp1mfKoN483HNMiycLWK5kM1oTkLs9kO0P8emj1RcP8JtX1TwFLb2Ch4-cCG6MEmNiH2VnUH6KZPfapvb8jp8upopBsNEbBnMRqs-nMzf5nnN990AOsDTm_A0v7AaeN8Jvf_w2s_QPeGyBPH_YCH6Ea7PkLH8U7vhW--fMevsWn3Wx27I3R73rceoR9xhuPRaFHEFcdxNsYQ3CZ6c6rCcXqWF0k1nWHIJvGYV9wUpeB8got4nOT4w6IoqxIvoQ8MxYvsPMuXGdZFK7zQQI5nHKC94O_MDGWSnaXcgsdTXPGUl6N8zkuzqCHvnfAin8EqRfkYLSa8Gk2t4TYHS9KQ7S2P0Y6pug49yXzlBo2nGHV0-tqFUlLXaZgXNSGhrNO_g1saeaR121C2JKxpQ-gTdLjerNtjhAmTndN4JFKt66mgi8B7OLUmDwOEUso5QeRSjkIOVOf6xo3PAlIeLQyhhSG0MAQIQxDIg07Q219jtj3Rx7W934CcxWDvu2t7nmoVEqAempVX6vIluReuG7IIcj14fKlaV7O5lPmAm8xjT_95nZfoznw8EWmSnT9Dd10dfDgEMPAUHe4vvrbP0S35bf9pd_HC2MdPTeP9Ww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AN+ACCURATE+AND+EFFICIENT+ALGORITHM+FOR+DETECTION+OF+RADIO+BURSTS+WITH+AN+UNKNOWN+DISPERSION+MEASURE%2C+FOR+SINGLE-DISH+TELESCOPES+AND+INTERFEROMETERS&rft.jtitle=The+Astrophysical+journal&rft.au=Zackay%2C+Barak&rft.au=Ofek%2C+Eran+O.&rft.date=2017-01-20&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=835&rft.issue=1&rft.spage=11&rft_id=info:doi/10.3847%2F1538-4357%2F835%2F1%2F11&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_835_1_11
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon