Adaptive Runtime-Assisted Block Prefetching on Chip-Multiprocessors

Memory stalls are a significant source of performance degradation in modern processors. Data prefetching is a widely adopted and well studied technique used to alleviate this problem. Prefetching can be performed by the hardware, or be initiated and controlled by software. Among software controlled...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of parallel programming Jg. 45; H. 3; S. 530 - 550
Hauptverfasser: Garcia, Victor, Rico, Alejandro, Villavieja, Carlos, Carpenter, Paul, Navarro, Nacho, Ramirez, Alex
Format: Journal Article Verlag
Sprache:Englisch
Veröffentlicht: New York Springer US 01.06.2017
Springer Nature B.V
Schlagworte:
ISSN:0885-7458, 1573-7640
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Memory stalls are a significant source of performance degradation in modern processors. Data prefetching is a widely adopted and well studied technique used to alleviate this problem. Prefetching can be performed by the hardware, or be initiated and controlled by software. Among software controlled prefetching we find a wide variety of schemes, including runtime-directed prefetching and more specifically runtime-directed block prefetching. This paper proposes a hybrid prefetching mechanism that integrates a software driven block prefetcher with existing hardware prefetching techniques. Our runtime-assisted software prefetcher brings large blocks of data on-chip with the support of a low cost hardware engine, and synergizes with existing hardware prefetchers that manage locality at a finer granularity. The runtime system that drives the prefetch engine dynamically selects which cache to prefetch to. Our evaluation on a set of scientific benchmarks obtains a maximum speed up of 32 and 10 % on average compared to a baseline with hardware prefetching only. As a result, we also achieve a reduction of up to 18 and 3 % on average in energy-to-solution.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0885-7458
1573-7640
DOI:10.1007/s10766-016-0431-8