On parallelizing dual decomposition in stochastic integer programming
For stochastic mixed-integer programs, we revisit the dual decomposition algorithm of Carøe and Schultz from a computational perspective with the aim of its parallelization. We address an important bottleneck of parallel execution by identifying a formulation that permits the parallel solution of th...
Uloženo v:
| Vydáno v: | Operations research letters Ročník 41; číslo 3; s. 252 - 258 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.05.2013
Elsevier |
| Témata: | |
| ISSN: | 0167-6377, 1872-7468 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | For stochastic mixed-integer programs, we revisit the dual decomposition algorithm of Carøe and Schultz from a computational perspective with the aim of its parallelization. We address an important bottleneck of parallel execution by identifying a formulation that permits the parallel solution of the master program by using structure-exploiting interior-point solvers. Our results demonstrate the potential for parallel speedup and the importance of regularization (stabilization) in the dual optimization. Load imbalance is identified as a remaining barrier to parallel scalability. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0167-6377 1872-7468 |
| DOI: | 10.1016/j.orl.2013.02.003 |