Complexity of first-order inexact Lagrangian and penalty methods for conic convex programming

In this paper we present a complete iteration complexity analysis of inexact first-order Lagrangian and penalty methods for solving cone-constrained convex problems that have or may not have optimal Lagrange multipliers that close the duality gap. We first assume the existence of optimal Lagrange mu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization methods & software Ročník 34; číslo 2; s. 305 - 335
Hlavní autoři: Necoara, I., Patrascu, A., Glineur, F.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 04.03.2019
Taylor & Francis Ltd
Témata:
ISSN:1055-6788, 1029-4937
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper we present a complete iteration complexity analysis of inexact first-order Lagrangian and penalty methods for solving cone-constrained convex problems that have or may not have optimal Lagrange multipliers that close the duality gap. We first assume the existence of optimal Lagrange multipliers and study primal-dual first-order methods based on inexact information and augmented Lagrangian smoothing or Nesterov-type smoothing. For inexact (fast) gradient augmented Lagrangian methods, we derive an overall computational complexity of projections onto a simple primal set in order to attain an ε-optimal solution of the conic convex problem. For the inexact fast gradient method combined with Nesterov-type smoothing, we derive computational complexity projections onto the same set. Then, we assume that optimal Lagrange multipliers might not exist for the cone-constrained convex problem, and analyse the fast gradient method for solving penalty reformulations of the problem. For the fast gradient method combined with penalty framework, we also derive an overall computational complexity of projections onto a simple primal set to attain an ε-optimal solution for the original problem.
AbstractList In this paper we present a complete iteration complexity analysis of inexact first-order Lagrangian and penalty methods for solving cone-constrained convex problems that have or may not have optimal Lagrange multipliers that close the duality gap. We first assume the existence of optimal Lagrange multipliers and study primal-dual first-order methods based on inexact information and augmented Lagrangian smoothing or Nesterov-type smoothing. For inexact (fast) gradient augmented Lagrangian methods, we derive an overall computational complexity of [Formula omitted.] projections onto a simple primal set in order to attain an [epsilon]-optimal solution of the conic convex problem. For the inexact fast gradient method combined with Nesterov-type smoothing, we derive computational complexity [Formula omitted.] projections onto the same set. Then, we assume that optimal Lagrange multipliers might not exist for the cone-constrained convex problem, and analyse the fast gradient method for solving penalty reformulations of the problem. For the fast gradient method combined with penalty framework, we also derive an overall computational complexity of [Formula omitted.] projections onto a simple primal set to attain an [epsilon]-optimal solution for the original problem.
In this paper we present a complete iteration complexity analysis of inexact first-order Lagrangian and penalty methods for solving cone-constrained convex problems that have or may not have optimal Lagrange multipliers that close the duality gap. We first assume the existence of optimal Lagrange multipliers and study primal-dual first-order methods based on inexact information and augmented Lagrangian smoothing or Nesterov-type smoothing. For inexact (fast) gradient augmented Lagrangian methods, we derive an overall computational complexity of projections onto a simple primal set in order to attain an ε-optimal solution of the conic convex problem. For the inexact fast gradient method combined with Nesterov-type smoothing, we derive computational complexity projections onto the same set. Then, we assume that optimal Lagrange multipliers might not exist for the cone-constrained convex problem, and analyse the fast gradient method for solving penalty reformulations of the problem. For the fast gradient method combined with penalty framework, we also derive an overall computational complexity of projections onto a simple primal set to attain an ε-optimal solution for the original problem.
Author Necoara, I.
Glineur, F.
Patrascu, A.
Author_xml – sequence: 1
  givenname: I.
  surname: Necoara
  fullname: Necoara, I.
  email: ion.necoara@acse.pub.ro
  organization: Automatic Control and Systems Engineering Department, University Politehnica Bucharest
– sequence: 2
  givenname: A.
  surname: Patrascu
  fullname: Patrascu, A.
  organization: Automatic Control and Systems Engineering Department, University Politehnica Bucharest
– sequence: 3
  givenname: F.
  surname: Glineur
  fullname: Glineur, F.
  organization: Center for Operations Research and Econometrics, Catholic University of Louvain
BookMark eNqFkE1LAzEQhoNUsK3-BCHgeWs-NtksXpTiFxS86FFCmk1qym5Sk1Tbf-8u1YsHvczM4X1mhmcCRj54A8A5RjOMBLrEiDFeCTEjCFczTAXiJTkCY4xIXZQ1rUbDzFgxhE7AJKU1QqjEJR-D13noNq3ZubyHwULrYspFiI2J0HmzUzrDhVpF5VdOeah8AzfGq7ZPdya_hSZBGyLUwTs91A-zg5sYeqDrnF-dgmOr2mTOvvsUvNzdPs8fisXT_eP8ZlFoKlguGmMryrVY1sJyKoRSojaiJKbmhGtWa8wpX5ZMUIVVZZuybjRpKKoFJqS0SzoFF4e9_e33rUlZrsM29n8mSXDFK1RRzPrU1SGlY0gpGiu1yyq74HNUrpUYycGn_PEpB5_y22dPs1_0JrpOxf2_3PWBc75X1anPENtGZrVvQ7S9WO2SpH-v-AKWUo8A
CitedBy_id crossref_primary_10_1137_20M136147X
crossref_primary_10_1007_s12532_021_00205_x
crossref_primary_10_1007_s12532_019_00173_3
crossref_primary_10_1007_s10589_022_00358_y
crossref_primary_10_1137_22M1500496
crossref_primary_10_1007_s10589_020_00174_2
crossref_primary_10_1007_s10589_025_00730_8
crossref_primary_10_1007_s10915_025_02934_w
crossref_primary_10_1007_s11590_016_1024_6
crossref_primary_10_1137_19M1293855
crossref_primary_10_1137_21M1403837
crossref_primary_10_1137_18M1171011
crossref_primary_10_1109_TSP_2020_3018317
crossref_primary_10_1109_TAC_2021_3118340
crossref_primary_10_1007_s10589_018_0033_z
crossref_primary_10_1007_s10957_023_02218_z
Cites_doi 10.1080/02331934.2015.1044898
10.1137/100818327
10.1137/070708111
10.1137/120897547
10.1007/s10107-006-0034-z
10.1137/S1052623403425629
10.1007/s10107-013-0677-5
10.1007/s10107-015-0861-x
10.1080/10556788.2016.1161763
10.1137/080716542
10.1007/s10107-004-0552-5
10.1007/s10107-012-0629-5
10.1109/TAC.2008.2007159
10.1109/TAC.2013.2294614
10.1007/978-3-642-02431-3
10.1007/s10107-008-0261-6
10.1080/02331934.2012.745530
10.1137/090753127
10.1007/s11750-014-0326-z
10.1007/s10107-013-0686-4
10.1137/110826102
10.1007/s10107-012-0588-x
ContentType Journal Article
Copyright 2017 Informa UK Limited, trading as Taylor & Francis Group 2017
2017 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2017 Informa UK Limited, trading as Taylor & Francis Group 2017
– notice: 2017 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/10556788.2017.1380642
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4937
EndPage 335
ExternalDocumentID 10_1080_10556788_2017_1380642
1380642
Genre Article
GrantInformation_xml – fundername: Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
  grantid: MoCOBiDS no. 176/01.10.2015
  funderid: 10.13039/501100006595
GroupedDBID .4S
.7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EMK
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c385t-def736c8b98f6388aa89e842e9626c59c1636b4583a1a7fd49dc2d30981224fb3
IEDL.DBID TFW
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457978700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1055-6788
IngestDate Wed Aug 13 04:37:32 EDT 2025
Tue Nov 18 20:38:48 EST 2025
Sat Nov 29 02:36:06 EST 2025
Mon Oct 20 23:49:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-def736c8b98f6388aa89e842e9626c59c1636b4583a1a7fd49dc2d30981224fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://hdl.handle.net/2078.1/195726
PQID 2176707315
PQPubID 186278
PageCount 31
ParticipantIDs crossref_citationtrail_10_1080_10556788_2017_1380642
proquest_journals_2176707315
informaworld_taylorfrancis_310_1080_10556788_2017_1380642
crossref_primary_10_1080_10556788_2017_1380642
PublicationCentury 2000
PublicationDate 2019-03-04
PublicationDateYYYYMMDD 2019-03-04
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-04
  day: 04
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Optimization methods & software
PublicationYear 2019
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0010
CIT0021
CIT0020
CIT0012
CIT0023
CIT0011
CIT0022
CIT0003
CIT0025
CIT0002
CIT0013
CIT0005
CIT0016
CIT0004
CIT0015
CIT0007
CIT0018
CIT0006
CIT0017
CIT0009
CIT0008
CIT0019
References_xml – ident: CIT0025
  doi: 10.1080/02331934.2015.1044898
– ident: CIT0003
  doi: 10.1137/100818327
– ident: CIT0017
  doi: 10.1137/070708111
– ident: CIT0016
  doi: 10.1137/120897547
– ident: CIT0020
  doi: 10.1007/s10107-006-0034-z
– ident: CIT0018
  doi: 10.1137/S1052623403425629
– ident: CIT0007
  doi: 10.1007/s10107-013-0677-5
– ident: CIT0010
  doi: 10.1007/s10107-015-0861-x
– ident: CIT0013
  doi: 10.1080/10556788.2016.1161763
– ident: CIT0002
  doi: 10.1137/080716542
– ident: CIT0019
  doi: 10.1007/s10107-004-0552-5
– ident: CIT0021
  doi: 10.1007/s10107-012-0629-5
– ident: CIT0015
  doi: 10.1109/TAC.2008.2007159
– ident: CIT0012
  doi: 10.1109/TAC.2013.2294614
– ident: CIT0023
  doi: 10.1007/978-3-642-02431-3
– ident: CIT0008
  doi: 10.1007/s10107-008-0261-6
– ident: CIT0005
  doi: 10.1080/02331934.2012.745530
– ident: CIT0011
  doi: 10.1137/090753127
– ident: CIT0004
  doi: 10.1007/s11750-014-0326-z
– ident: CIT0022
  doi: 10.1007/s10107-013-0686-4
– ident: CIT0006
  doi: 10.1137/110826102
– ident: CIT0009
  doi: 10.1007/s10107-012-0588-x
SSID ssj0004146
Score 2.3036957
Snippet In this paper we present a complete iteration complexity analysis of inexact first-order Lagrangian and penalty methods for solving cone-constrained convex...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 305
SubjectTerms (augmented) dual first-order methods
approximate primal solution
Complexity
Computational geometry
conic convex problems
Convexity
Iterative methods
Lagrange multiplier
Mathematical programming
Methods
overall computational complexity
penalty fast gradient methods
penalty functions
smooth (augmented) dual functions
Smoothing
Title Complexity of first-order inexact Lagrangian and penalty methods for conic convex programming
URI https://www.tandfonline.com/doi/abs/10.1080/10556788.2017.1380642
https://www.proquest.com/docview/2176707315
Volume 34
WOSCitedRecordID wos000457978700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1029-4937
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004146
  issn: 1055-6788
  databaseCode: TFW
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPOjBb3E6JQevmWuTtslRxOFhDA9Td5GSpskY6DbWKvO_9yVNdUNkBz0W-h5p8vI-ml9-D6FLnsG6Bh1DILvQhCWaEU6pIBD8lKShiaRr5_PYS_p9PhyKe48mLDys0tbQpiKKcL7abm6ZFTUi7sr1dITSzQKzknZAuU2iwQtDZm9BfYPu0_fNSH-_CCSIFanv8PymZSU6rXCX_vDVLgB1d_9h6Htox2ef-Loyl320oScHaHuJk_AQPVsPYVkyyw88NdiMIT0kjqATw0sLqUrckyOIcCMwLAwDwTMNOuHtqhl1geFrsLKMu9hB2hfYY8BeQf8ReujeDm7uiO_BQBTlUUlybRIaK54JbmCrcim50JyFWkAlpCKhIJ-LM3v4KgOZmJyJXIU57Qhuj-xMRo9RYzKd6BOEWa5i8B8CKijN4iDI4iy3CX4nNAyqHNlErJ77VHmCctsn4yUNPI9pPXupnb3Uz14Ttb_EZhVDxzoBsbywael-jZiqj0lK18i2aitI_WYvUqjq4gRcZRCd_kH1GdqCR-HwbayFGuX8TZ-jTfVejov5hTPrT2DG8RI
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTwIxEG4UTdSDbyOK2oPXIkuX3fZojAQjckLlYpputyUkCgRWg__emX0oxBgPet7OpNtO59HOfEPIuYhgX72aY-BdWOaH1meCc8nA-BnN666h03Y-D-2w0xG9npyvhcG0SoyhXQYUkepqPNx4GV2kxF2kTR0hdsPMrLDqcYFe9DJZwe50GIB1m49ftZF5hRGQMKQpqnh-YrNgnxbQS79p69QENbf-Y_LbZDN3QOllJjE7ZMkOd8nGHCzhHnlCJYFAmck7HTnqBuAhshSjk8KgmTYJbes-GLk-yBaFmdCxBZ4wOutHPaXwO9Qg6C5Ns9pnNE8DewH---S-ed29arG8DQMzXDQSFlsX8sCISAoHp1VoLaQVft1KCIZMQxpw6YII31-1p0MX-zI29ZjXpMBXOxfxA1Iajob2kFA_NgGoEAlBlPUDz4uCKEYfv1Z3PgQ6ukz8YvGVyTHKsVXGs_JyKNNi9RSunspXr0yqn2TjDKTjNwI5v7MqSW9HXNbKRPFfaCuFGKj8vE8VBHZBCNrSaxz9gfUZWWt179qqfdO5PSbr8Elm6W4VUkomr_aErJq3ZDCdnKYy_gGggPUy
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTwMhECZajdGDb2N9cvCKdgu7C0ejNhqbxoOPXgxhWWiaaNvY1ei_d2BZtTHGg56XmcAwzGMZvkHogGewr1HDEoguDGGpYYRTKgg4P61o08bKt_O5baedDu92xVWoJhyHskqXQ9sSKMLbane4R7mtKuKOfE9HSN1cYVZ6GFHuguhpNAOhc-wU-7p19_k0MjwwAhLiaKpHPD-xmXBPE-Cl34y190CtpX-Y-zJaDOEnPi71ZQVNmcEqWvgCSriG7p2JcDCZxRseWmz7EB8Sj9CJYdCr0gVuqx64uB5oFoaJ4JEBnjC67EY9xrAarB3kLvY17a84FIE9Av91dNM6uz45J6EJA9GUxwXJjU1ponkmuIWzypXiwnDWNAJSIR0LDQFdkrnbVxWp1OZM5LqZ04bg7s7OZnQD1QbDgdlEmOU6AQMiIIUyLImiLMlyF-E3mpZBmqPqiFWylzoglLtGGQ8yCkCmlfSkk54M0qujww-yUQnR8RuB-LqxsvD_RmzZyETSX2h3Ki2Q4bSPJaR1SQq2Moq3_sB6H81dnbZk-6JzuY3m4YvwtW5sB9WKp2ezi2b1S9EfP-15DX8Huunz5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complexity+of+first-order+inexact+Lagrangian+and+penalty+methods+for+conic+convex+programming&rft.jtitle=Optimization+methods+%26+software&rft.au=Necoara%2C+I.&rft.au=Patrascu%2C+A.&rft.au=Glineur%2C+F.&rft.date=2019-03-04&rft.pub=Taylor+%26+Francis&rft.issn=1055-6788&rft.eissn=1029-4937&rft.volume=34&rft.issue=2&rft.spage=305&rft.epage=335&rft_id=info:doi/10.1080%2F10556788.2017.1380642&rft.externalDocID=1380642
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-6788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-6788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-6788&client=summon