Complexity of first-order inexact Lagrangian and penalty methods for conic convex programming
In this paper we present a complete iteration complexity analysis of inexact first-order Lagrangian and penalty methods for solving cone-constrained convex problems that have or may not have optimal Lagrange multipliers that close the duality gap. We first assume the existence of optimal Lagrange mu...
Uloženo v:
| Vydáno v: | Optimization methods & software Ročník 34; číslo 2; s. 305 - 335 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
04.03.2019
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 1055-6788, 1029-4937 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper we present a complete iteration complexity analysis of inexact first-order Lagrangian and penalty methods for solving cone-constrained convex problems that have or may not have optimal Lagrange multipliers that close the duality gap. We first assume the existence of optimal Lagrange multipliers and study primal-dual first-order methods based on inexact information and augmented Lagrangian smoothing or Nesterov-type smoothing. For inexact (fast) gradient augmented Lagrangian methods, we derive an overall computational complexity of
projections onto a simple primal set in order to attain an ε-optimal solution of the conic convex problem. For the inexact fast gradient method combined with Nesterov-type smoothing, we derive computational complexity
projections onto the same set. Then, we assume that optimal Lagrange multipliers might not exist for the cone-constrained convex problem, and analyse the fast gradient method for solving penalty reformulations of the problem. For the fast gradient method combined with penalty framework, we also derive an overall computational complexity of
projections onto a simple primal set to attain an ε-optimal solution for the original problem. |
|---|---|
| AbstractList | In this paper we present a complete iteration complexity analysis of inexact first-order Lagrangian and penalty methods for solving cone-constrained convex problems that have or may not have optimal Lagrange multipliers that close the duality gap. We first assume the existence of optimal Lagrange multipliers and study primal-dual first-order methods based on inexact information and augmented Lagrangian smoothing or Nesterov-type smoothing. For inexact (fast) gradient augmented Lagrangian methods, we derive an overall computational complexity of [Formula omitted.] projections onto a simple primal set in order to attain an [epsilon]-optimal solution of the conic convex problem. For the inexact fast gradient method combined with Nesterov-type smoothing, we derive computational complexity [Formula omitted.] projections onto the same set. Then, we assume that optimal Lagrange multipliers might not exist for the cone-constrained convex problem, and analyse the fast gradient method for solving penalty reformulations of the problem. For the fast gradient method combined with penalty framework, we also derive an overall computational complexity of [Formula omitted.] projections onto a simple primal set to attain an [epsilon]-optimal solution for the original problem. In this paper we present a complete iteration complexity analysis of inexact first-order Lagrangian and penalty methods for solving cone-constrained convex problems that have or may not have optimal Lagrange multipliers that close the duality gap. We first assume the existence of optimal Lagrange multipliers and study primal-dual first-order methods based on inexact information and augmented Lagrangian smoothing or Nesterov-type smoothing. For inexact (fast) gradient augmented Lagrangian methods, we derive an overall computational complexity of projections onto a simple primal set in order to attain an ε-optimal solution of the conic convex problem. For the inexact fast gradient method combined with Nesterov-type smoothing, we derive computational complexity projections onto the same set. Then, we assume that optimal Lagrange multipliers might not exist for the cone-constrained convex problem, and analyse the fast gradient method for solving penalty reformulations of the problem. For the fast gradient method combined with penalty framework, we also derive an overall computational complexity of projections onto a simple primal set to attain an ε-optimal solution for the original problem. |
| Author | Necoara, I. Glineur, F. Patrascu, A. |
| Author_xml | – sequence: 1 givenname: I. surname: Necoara fullname: Necoara, I. email: ion.necoara@acse.pub.ro organization: Automatic Control and Systems Engineering Department, University Politehnica Bucharest – sequence: 2 givenname: A. surname: Patrascu fullname: Patrascu, A. organization: Automatic Control and Systems Engineering Department, University Politehnica Bucharest – sequence: 3 givenname: F. surname: Glineur fullname: Glineur, F. organization: Center for Operations Research and Econometrics, Catholic University of Louvain |
| BookMark | eNqFkE1LAzEQhoNUsK3-BCHgeWs-NtksXpTiFxS86FFCmk1qym5Sk1Tbf-8u1YsHvczM4X1mhmcCRj54A8A5RjOMBLrEiDFeCTEjCFczTAXiJTkCY4xIXZQ1rUbDzFgxhE7AJKU1QqjEJR-D13noNq3ZubyHwULrYspFiI2J0HmzUzrDhVpF5VdOeah8AzfGq7ZPdya_hSZBGyLUwTs91A-zg5sYeqDrnF-dgmOr2mTOvvsUvNzdPs8fisXT_eP8ZlFoKlguGmMryrVY1sJyKoRSojaiJKbmhGtWa8wpX5ZMUIVVZZuybjRpKKoFJqS0SzoFF4e9_e33rUlZrsM29n8mSXDFK1RRzPrU1SGlY0gpGiu1yyq74HNUrpUYycGn_PEpB5_y22dPs1_0JrpOxf2_3PWBc75X1anPENtGZrVvQ7S9WO2SpH-v-AKWUo8A |
| CitedBy_id | crossref_primary_10_1137_20M136147X crossref_primary_10_1007_s12532_021_00205_x crossref_primary_10_1007_s12532_019_00173_3 crossref_primary_10_1007_s10589_022_00358_y crossref_primary_10_1137_22M1500496 crossref_primary_10_1007_s10589_020_00174_2 crossref_primary_10_1007_s10589_025_00730_8 crossref_primary_10_1007_s10915_025_02934_w crossref_primary_10_1007_s11590_016_1024_6 crossref_primary_10_1137_19M1293855 crossref_primary_10_1137_21M1403837 crossref_primary_10_1137_18M1171011 crossref_primary_10_1109_TSP_2020_3018317 crossref_primary_10_1109_TAC_2021_3118340 crossref_primary_10_1007_s10589_018_0033_z crossref_primary_10_1007_s10957_023_02218_z |
| Cites_doi | 10.1080/02331934.2015.1044898 10.1137/100818327 10.1137/070708111 10.1137/120897547 10.1007/s10107-006-0034-z 10.1137/S1052623403425629 10.1007/s10107-013-0677-5 10.1007/s10107-015-0861-x 10.1080/10556788.2016.1161763 10.1137/080716542 10.1007/s10107-004-0552-5 10.1007/s10107-012-0629-5 10.1109/TAC.2008.2007159 10.1109/TAC.2013.2294614 10.1007/978-3-642-02431-3 10.1007/s10107-008-0261-6 10.1080/02331934.2012.745530 10.1137/090753127 10.1007/s11750-014-0326-z 10.1007/s10107-013-0686-4 10.1137/110826102 10.1007/s10107-012-0588-x |
| ContentType | Journal Article |
| Copyright | 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 2017 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 – notice: 2017 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1080/10556788.2017.1380642 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1029-4937 |
| EndPage | 335 |
| ExternalDocumentID | 10_1080_10556788_2017_1380642 1380642 |
| Genre | Article |
| GrantInformation_xml | – fundername: Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii grantid: MoCOBiDS no. 176/01.10.2015 funderid: 10.13039/501100006595 |
| GroupedDBID | .4S .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EDO EMK EPL EST ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P KYCEM LJTGL M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c385t-def736c8b98f6388aa89e842e9626c59c1636b4583a1a7fd49dc2d30981224fb3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457978700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1055-6788 |
| IngestDate | Wed Aug 13 04:37:32 EDT 2025 Tue Nov 18 20:38:48 EST 2025 Sat Nov 29 02:36:06 EST 2025 Mon Oct 20 23:49:45 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c385t-def736c8b98f6388aa89e842e9626c59c1636b4583a1a7fd49dc2d30981224fb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | http://hdl.handle.net/2078.1/195726 |
| PQID | 2176707315 |
| PQPubID | 186278 |
| PageCount | 31 |
| ParticipantIDs | crossref_citationtrail_10_1080_10556788_2017_1380642 proquest_journals_2176707315 informaworld_taylorfrancis_310_1080_10556788_2017_1380642 crossref_primary_10_1080_10556788_2017_1380642 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-04 |
| PublicationDateYYYYMMDD | 2019-03-04 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-04 day: 04 |
| PublicationDecade | 2010 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Optimization methods & software |
| PublicationYear | 2019 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0010 CIT0021 CIT0020 CIT0012 CIT0023 CIT0011 CIT0022 CIT0003 CIT0025 CIT0002 CIT0013 CIT0005 CIT0016 CIT0004 CIT0015 CIT0007 CIT0018 CIT0006 CIT0017 CIT0009 CIT0008 CIT0019 |
| References_xml | – ident: CIT0025 doi: 10.1080/02331934.2015.1044898 – ident: CIT0003 doi: 10.1137/100818327 – ident: CIT0017 doi: 10.1137/070708111 – ident: CIT0016 doi: 10.1137/120897547 – ident: CIT0020 doi: 10.1007/s10107-006-0034-z – ident: CIT0018 doi: 10.1137/S1052623403425629 – ident: CIT0007 doi: 10.1007/s10107-013-0677-5 – ident: CIT0010 doi: 10.1007/s10107-015-0861-x – ident: CIT0013 doi: 10.1080/10556788.2016.1161763 – ident: CIT0002 doi: 10.1137/080716542 – ident: CIT0019 doi: 10.1007/s10107-004-0552-5 – ident: CIT0021 doi: 10.1007/s10107-012-0629-5 – ident: CIT0015 doi: 10.1109/TAC.2008.2007159 – ident: CIT0012 doi: 10.1109/TAC.2013.2294614 – ident: CIT0023 doi: 10.1007/978-3-642-02431-3 – ident: CIT0008 doi: 10.1007/s10107-008-0261-6 – ident: CIT0005 doi: 10.1080/02331934.2012.745530 – ident: CIT0011 doi: 10.1137/090753127 – ident: CIT0004 doi: 10.1007/s11750-014-0326-z – ident: CIT0022 doi: 10.1007/s10107-013-0686-4 – ident: CIT0006 doi: 10.1137/110826102 – ident: CIT0009 doi: 10.1007/s10107-012-0588-x |
| SSID | ssj0004146 |
| Score | 2.3036957 |
| Snippet | In this paper we present a complete iteration complexity analysis of inexact first-order Lagrangian and penalty methods for solving cone-constrained convex... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 305 |
| SubjectTerms | (augmented) dual first-order methods approximate primal solution Complexity Computational geometry conic convex problems Convexity Iterative methods Lagrange multiplier Mathematical programming Methods overall computational complexity penalty fast gradient methods penalty functions smooth (augmented) dual functions Smoothing |
| Title | Complexity of first-order inexact Lagrangian and penalty methods for conic convex programming |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10556788.2017.1380642 https://www.proquest.com/docview/2176707315 |
| Volume | 34 |
| WOSCitedRecordID | wos000457978700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor and Francis Online Journals customDbUrl: eissn: 1029-4937 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004146 issn: 1055-6788 databaseCode: TFW dateStart: 19920101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvTgW3yTg9dq06RtchRx8SDiYUUvEpI0WRZ0d7FV1n_vJE11FxEPemshM6STyTyayTcInbDKY64XJMkULAOjTiSasiyx4Hq0zkviUhOaTZQ3N_zhQdzGasI6llX6HNq1QBHBVvvNrXTdVcSdhZ6OkLr5wqzylFDug2iwwhDZ-6K-fu_-62ZkvF8EFIkn6e7w_MRlzjvNYZd-s9XBAfXW_mHq62g1Rp_4vFWXDbRgR5toZQaTcAs9egvhUTKbdzx22A0hPEwCQCeGQVNlGnytBuDhBqBYGCaCJxZ4wui2GXWN4Wuw8Yi7OJS0T3GsAXsG_tvornfZv7hKYg-GxFCeN0llXUkLw7XgDrYqV4oLy1lmBWRCJhcG4rlC-8NXRVTpKiYqk1U0Fdwf2TlNd9DiaDyyuwhr4nJmFC2sKRhIQxXwnBmiTZqnpEr3EOtkL00EKPd9Mp4kiTimnfSkl56M0ttDp59kkxah4zcCMbuwsgm_Rlzbx0TSX2gPOy2QcbPXErK6ogRTSfL9P7A-QMvwKkJ9GztEi83Lqz1CS-atGdYvx0GtPwCs8_Hi |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6-QD34Ft_m4LXaNGmbHEVcFNc9rehFQpomIugqbhX9986kra6IeNBboZ0hnUxmMsnMN4TsiRIx1zMWJQamQXCvooKLJHLgeooizZmPbWg2kfd68upKjdbCYFolxtC-BooIthoXNx5GtylxB6GpI8RumJmV7zMucRc9TiaxOx0GYP3O5WdtZFNhBCQR0rRVPD-x-eKfvqCXfrPWwQV15v9j8AtkrtmA0sNaYxbJmBsskdkRWMJlco1GAoEyqzf64Km_hR1iFDA6KXz0amxFu-YGnNwN6BaFkdBHBzzh67of9ZDC71CLoLs0ZLW_0iYN7B74r5CLznH_6CRq2jBElsu0ikrnc55ZWSjpYbVKY6RyUiROQTBkU2VhS5cVeP9qmMl9KVRpk5LHSuKtnS_4KpkYPAzcGqEF86mwhmfOZgKkYTJ4TiwrbJzGrIzXiWiFr22DUY6tMu40a6BMW-lplJ5upLdO9j_IHmuQjt8I1OjM6iqcjvi6lYnmv9ButWqgm_U-1BDYZTlYS5Zu_IH1Lpk-6Z93dfe0d7ZJZuCVCuluYotMVE_PbptM2Zfqdvi0E3T8Hfcq9gU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6-ED34Ft_m4LVr06RtchR1UZTFw4p7kZCmySLourhV9N87SVN1EfGgt0IzQzqZzKOZfIPQASsd5npGokTBMjBqRVRQlkQGXE9RpDmxsfbNJvJOh_d64ipUE45CWaXLoW0NFOFttdvcw9I2FXGHvqcjpG6uMCtvEcpdED2JpiF0Tp1id9s3n1cjwwUjIIkcTXOJ5yc2Y-5pDLz0m7H2Hqi9-A9zX0ILIfzER7W-LKMJM1hB819ACVfRrTMRDiazesOPFts7iA8jj9CJYdCr0hW-VH1wcX3QLAwTwUMDPGF03Y16hOFrsHaQu9jXtL_iUAT2APzX0HX7tHt8FoUmDJGmPK2i0ticZpoXglvYq1wpLgxniRGQCulUaAjossKdviqiclsyUeqkpLHg7szOFnQdTQ0eB2YD4YLYlGlFM6MzBtJQGTwnmhQ6TmNSxpuINbKXOiCUu0YZ95IEINNGetJJTwbpbaLWB9mwhuj4jUB8XVhZ-X8jtm5kIukvtDuNFsiw20cS0rosB1tJ0q0_sN5Hs1cnbXl53rnYRnPwRvhaN7aDpqqnZ7OLZvRLdTd62vMa_g4QPfS3 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complexity+of+first-order+inexact+Lagrangian+and+penalty+methods+for+conic+convex+programming&rft.jtitle=Optimization+methods+%26+software&rft.au=Necoara%2C+I.&rft.au=Patrascu%2C+A.&rft.au=Glineur%2C+F.&rft.date=2019-03-04&rft.pub=Taylor+%26+Francis&rft.issn=1055-6788&rft.eissn=1029-4937&rft.volume=34&rft.issue=2&rft.spage=305&rft.epage=335&rft_id=info:doi/10.1080%2F10556788.2017.1380642&rft.externalDocID=1380642 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-6788&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-6788&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-6788&client=summon |