Low-Complexity and High-Speed Architecture Design Methodology for Complex Square Root
In this paper, we propose a low-complexity and high-speed VLSI architecture design methodology for complex square root computation using COordinate Rotation DIgital Computer (CORDIC). The proposed methodology is independent of angle computation in the CORDIC unlike the state-of-the-art methodologies...
Uloženo v:
| Vydáno v: | Circuits, systems, and signal processing Ročník 40; číslo 11; s. 5759 - 5772 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.11.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 0278-081X, 1531-5878 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we propose a low-complexity and high-speed VLSI architecture design methodology for complex square root computation using COordinate Rotation DIgital Computer (CORDIC). The proposed methodology is independent of angle computation in the CORDIC unlike the state-of-the-art methodologies. The proposed methodology is modelled in VHDL and synthesized under the TSMC 45-nm CMOS technology @ 1 GHz frequency. The synthesis results show that the proposed design saves 18.39%, 4.06% and 17.26%, 2.56% on chip area and power consumption when compared with the state-of-the-art methodologies without loss in accuracy. The proposed design saves the latency of 16 and 14 clock cycles when compared with the state-of-the-art implementations. The proposed design can process 23.4 and 127.344 billion additional samples per one joule energy when compared with the state-of-the-art designs. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0278-081X 1531-5878 |
| DOI: | 10.1007/s00034-021-01738-1 |