Enhancing web page classification through image-block importance analysis
We present a term weighting approach for improving web page classification, based on the assumption that the images of a web page are those elements which mainly attract the attention of the user. This assumption implies that the text contained in the visual block in which an image is located, calle...
Uložené v:
| Vydané v: | Information processing & management Ročník 44; číslo 4; s. 1431 - 1447 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Kidlington
Elsevier Ltd
01.07.2008
Elsevier Elsevier Science Ltd |
| Predmet: | |
| ISSN: | 0306-4573, 1873-5371 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We present a term weighting approach for improving web page classification, based on the assumption that the images of a web page are those elements which mainly attract the attention of the user. This assumption implies that the text contained in the visual block in which an image is located, called image-block, should contain significant information about the page contents. In this paper we propose a new metric, called the Inverse Term Importance Metric, aimed at assigning higher weights to important terms contained into important image-blocks identified by performing a visual layout analysis. We propose different methods to estimate the visual image-blocks importance, to smooth the term weight according to the importance of the blocks in which the term is located. The traditional TFxIDF model is modified accordingly and used in the classification task. The effectiveness of this new metric and the proposed block evaluation methods have been validated using different classification algorithms. |
|---|---|
| AbstractList | We present a term weighting approach for improving web page classification, based on the assumption that the images of a web page are those elements which mainly attract the attention of the user. This assumption implies that the text contained in the visual block in which an image is located, called image-block, should contain significant information about the page contents. In this paper we propose a new metric, called the Inverse Term Importance Metric, aimed at assigning higher weights to important terms contained into important image-blocks identified by performing a visual layout analysis. We propose different methods to estimate the visual image-blocks importance, to smooth the term weight according to the importance of the blocks in which the term is located. The traditional TFxIDF model is modified accordingly and used in the classification task. The effectiveness of this new metric and the proposed block evaluation methods have been validated using different classification algorithms. [PUBLICATION ABSTRACT] We present a term weighting approach for improving web page classification, based on the assumption that the images of a web page are those elements which mainly attract the attention of the user. This assumption implies that the text contained in the visual block in which an image is located, called image-block, should contain significant information about the page contents. In this paper we propose a new metric, called the Inverse Term Importance Metric, aimed at assigning higher weights to important terms contained into important image-blocks identified by performing a visual layout analysis. We propose different methods to estimate the visual image-blocks importance, to smooth the term weight according to the importance of the blocks in which the term is located. The traditional TFxIDF model is modified accordingly and used in the classification task. The effectiveness of this new metric and the proposed block evaluation methods have been validated using different classification algorithms. Adapted from the source document. We present a term weighting approach for improving web page classification, based on the assumption that the images of a web page are those elements which mainly attract the attention of the user. This assumption implies that the text contained in the visual block in which an image is located, called image-block, should contain significant information about the page contents. In this paper we propose a new metric, called the Inverse Term Importance Metric, aimed at assigning higher weights to important terms contained into important image-blocks identified by performing a visual layout analysis. We propose different methods to estimate the visual image-blocks importance, to smooth the term weight according to the importance of the blocks in which the term is located. The traditional TFxIDF model is modified accordingly and used in the classification task. The effectiveness of this new metric and the proposed block evaluation methods have been validated using different classification algorithms. |
| Author | Archetti, F. Messina, E. Fersini, E. |
| Author_xml | – sequence: 1 givenname: E. surname: Fersini fullname: Fersini, E. email: fersini@disco.unimib.it organization: Dipartimento di Informatica Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca, Italy – sequence: 2 givenname: E. surname: Messina fullname: Messina, E. organization: Dipartimento di Informatica Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca, Italy – sequence: 3 givenname: F. surname: Archetti fullname: Archetti, F. organization: Dipartimento di Informatica Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca, Italy |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20444543$$DView record in Pascal Francis |
| BookMark | eNp9kUFPwyAYhomZiXP6A7w1JnprhQKljSezTF2yxIueCTDYqF2p0Gr272Vu8bDDTpB8z0P43vcSjFrXagBuEMwQRMVDndluk-UQsgyhDEJ8BsaoZDilmKERGEMMi5RQhi_AZQg1hJBQlI_BfNauRatsu0p-tEw6sdKJakQI1lgleuvapF97N6zWid3EYSobpz7jvXO-j6JORCuabbDhCpwb0QR9fTgn4ON59j59TRdvL_Pp0yJVuKR9KrCRUpRVZbSgrCwJwYIoZHJGiZSUVlW-G5eSLU0pDMSSEaJxUehlLguq8ATc79_tvPsadOj5xgalm0a02g2BU1ZgyCoawdsjsHaDj78NHFWkioHgIkJ3B0gEJRrjd2EE3vm4rd_yHBJCKMGRQ3tOeReC1-YfQZDvGuA1jw3wXQMcIR4biA47cpTt_zLtvbDNSfNxb-oY5LfVngdldUx7ab1WPV86e8L-BR3eokg |
| CODEN | IPMADK |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2013_12_019 crossref_primary_10_1016_j_jss_2016_02_006 crossref_primary_10_1007_s42979_023_02137_w crossref_primary_10_1016_j_ins_2015_08_052 crossref_primary_10_1007_s11042_019_08373_8 crossref_primary_10_1007_s00799_015_0150_6 crossref_primary_10_1016_j_ipm_2009_08_003 |
| Cites_doi | 10.1007/3-540-36901-5_42 10.1007/BF00153759 10.1145/290941.291008 10.1016/0306-4573(88)90021-0 10.1145/361219.361220 |
| ContentType | Journal Article |
| Copyright | 2007 Elsevier Ltd 2015 INIST-CNRS Copyright Pergamon Press Inc. Jul 2008 |
| Copyright_xml | – notice: 2007 Elsevier Ltd – notice: 2015 INIST-CNRS – notice: Copyright Pergamon Press Inc. Jul 2008 |
| DBID | AAYXX CITATION IQODW E3H F2A |
| DOI | 10.1016/j.ipm.2007.11.003 |
| DatabaseName | CrossRef Pascal-Francis Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) |
| DatabaseTitle | CrossRef Library and Information Science Abstracts (LISA) |
| DatabaseTitleList | Library and Information Science Abstracts (LISA) Library and Information Science Abstracts (LISA) |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Library & Information Science |
| EISSN | 1873-5371 |
| EndPage | 1447 |
| ExternalDocumentID | 1490166381 20444543 10_1016_j_ipm_2007_11_003 S0306457307002117 |
| Genre | Feature |
| GroupedDBID | --K --M -~X .DC .~1 0B8 0R~ 1B1 1RT 1~. 1~5 29I 4.4 41~ 457 4G. 5GY 5VS 7-5 71M 77K 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN AAYOK ABBOA ABFNM ABFRF ABJNI ABMAC ABMMH ABPPZ ABXDB ABYKQ ACDAQ ACGFS ACHQT ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMY HVGLF HZ~ H~9 IHE J1W KOM LG9 LPU LY1 M3Y M41 MO0 MS~ MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSO SSS SSV SSZ T5K TN5 U5U UHB UHS UNMZH WUQ XFK ZMT ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADMHG ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV IQODW SSH E3H F2A |
| ID | FETCH-LOGICAL-c385t-a3fbba899fea5788443a4c1f2754bb55992ba898b7df8af03b744e366ed2b65c3 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000257276800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-4573 |
| IngestDate | Sat Sep 27 23:29:25 EDT 2025 Mon Nov 17 19:51:19 EST 2025 Wed Apr 02 07:16:20 EDT 2025 Tue Nov 18 22:26:12 EST 2025 Sat Nov 29 01:48:35 EST 2025 Fri Feb 23 02:18:39 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Vector space model Visual layout analysis Document classification Term weighting Image analysis Automatic classification Vector space Bayes method Web mining Information extraction Information retrieval system |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c385t-a3fbba899fea5788443a4c1f2754bb55992ba898b7df8af03b744e366ed2b65c3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 194930636 |
| PQPubID | 46166 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_57630795 proquest_journals_194930636 pascalfrancis_primary_20444543 crossref_primary_10_1016_j_ipm_2007_11_003 crossref_citationtrail_10_1016_j_ipm_2007_11_003 elsevier_sciencedirect_doi_10_1016_j_ipm_2007_11_003 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-07-01 |
| PublicationDateYYYYMMDD | 2008-07-01 |
| PublicationDate_xml | – month: 07 year: 2008 text: 2008-07-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington – name: Oxford |
| PublicationTitle | Information processing & management |
| PublicationYear | 2008 |
| Publisher | Elsevier Ltd Elsevier Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier – name: Elsevier Science Ltd |
| References | Yi, Liu (bib20) 2003 Salton, Wong, Yang (bib17) 1975; 18 Aha, Kibler, Albert (bib1) 1991; 6 Ponte, J. M., & Croft, W. B. (1998). A language modeling approach to information retrieval. In Li, Perona (bib8) 2005 Gao, Fan, Xue, Jain (bib4) 2006 Huang, Yu, Li, Xue, Zhang (bib5) 2005 Nicholas, Dhillon, Kogan (bib11) 2003 Song, Liu, Wen, Ma (bib18) 2004 Pearl (bib12) 1982 (pp. 275–281). (pp. 406–417). McCallum, Nigam (bib9) 1998 Salton, Buckley (bib16) 1998; 24 John, Langely (bib6) 1995 Kovacevic, Diligenti, Gori, Milutinovic (bib7) 2002 Platt (bib13) 1999 Quinlan (bib15) 1993 Mehta, Mitra, Karnick (bib10) 2005 Cai, D., Yu, S., Wen, J. R., & Ma, W. Y. (2003a). Extracting content structure for web pages based on visual representation. Technical Report MSR-TR-2003-79. Cai, D., Yu, S., Wen, J. R., & Ma, W. Y. (2003b). Extracting content structure for web pages based on visual representation. In X. Zhou, Y. Zhang, & M. E. Orlowska (Eds.) Witten, Frank (bib19) 1999 10.1016/j.ipm.2007.11.003_bib2 10.1016/j.ipm.2007.11.003_bib3 Pearl (10.1016/j.ipm.2007.11.003_bib12) 1982 Quinlan (10.1016/j.ipm.2007.11.003_bib15) 1993 Witten (10.1016/j.ipm.2007.11.003_bib19) 1999 Aha (10.1016/j.ipm.2007.11.003_bib1) 1991; 6 McCallum (10.1016/j.ipm.2007.11.003_bib9) 1998 Huang (10.1016/j.ipm.2007.11.003_bib5) 2005 10.1016/j.ipm.2007.11.003_bib14 Kovacevic (10.1016/j.ipm.2007.11.003_bib7) 2002 Song (10.1016/j.ipm.2007.11.003_bib18) 2004 Mehta (10.1016/j.ipm.2007.11.003_bib10) 2005 Salton (10.1016/j.ipm.2007.11.003_bib17) 1975; 18 Li (10.1016/j.ipm.2007.11.003_bib8) 2005 Nicholas (10.1016/j.ipm.2007.11.003_bib11) 2003 Platt (10.1016/j.ipm.2007.11.003_bib13) 1999 John (10.1016/j.ipm.2007.11.003_bib6) 1995 Salton (10.1016/j.ipm.2007.11.003_bib16) 1998; 24 Yi (10.1016/j.ipm.2007.11.003_bib20) 2003 Gao (10.1016/j.ipm.2007.11.003_bib4) 2006 |
| References_xml | – reference: Ponte, J. M., & Croft, W. B. (1998). A language modeling approach to information retrieval. In – reference: Cai, D., Yu, S., Wen, J. R., & Ma, W. Y. (2003a). Extracting content structure for web pages based on visual representation. Technical Report MSR-TR-2003-79. – start-page: 338 year: 1995 end-page: 345 ident: bib6 article-title: Estimating continuous distributions in Bayesian classifiers publication-title: Proceedings of the eleventh conference on uncertainty in artificial intelligence – year: 1998 ident: bib9 article-title: A comparison of event models for naive bayes text classification publication-title: Proceedings of the fifteenth national conference on artificial intelligence – volume: 24 start-page: 513 year: 1998 end-page: 523 ident: bib16 article-title: Term-weighting approaches in automatic text retrieval publication-title: Information Processing and Management – start-page: 250 year: 2002 end-page: 257 ident: bib7 article-title: Recognition of common areas in a web page using visual information: a possible application in a page classification publication-title: Proceedings of the 2002 IEEE international conference on data mining – reference: (pp. 275–281). – start-page: 185 year: 1999 end-page: 208 ident: bib13 article-title: Fast training of support vector machines using sequential minimal optimization publication-title: Advances in kernel methods: support vector learning – volume: 18 start-page: 613 year: 1975 end-page: 620 ident: bib17 article-title: A vector space model for automatic indexing publication-title: Communications of the ACM – start-page: 524 year: 2005 end-page: 531 ident: bib8 article-title: A Bayesian hierarchical model for learning natural scene categories publication-title: Proceeding of 2005 IEEE computer society conference on computer vision and pattern recognition – year: 1999 ident: bib19 article-title: Data mining: practical machine learning tools and techniques with java implementations – start-page: 901 year: 2006 end-page: 910 ident: bib4 article-title: Automatic image annotation by incorporating feature hierarchy and boosting to scale up SVM classifiers publication-title: Proceedings of the 14th annual ACM international conference on multimedia – start-page: 133 year: 1982 end-page: 136 ident: bib12 article-title: Reverend bayes on inference engines: a distributed hierarchical approach publication-title: Proceedings of the national conference on artificial intelligence – start-page: 203 year: 2004 end-page: 211 ident: bib18 article-title: Learning block importance models for web pages publication-title: Proceedings of the 13th international conference on World Wide Web – start-page: 43 year: 2003 end-page: 50 ident: bib20 article-title: Web page cleaning for web mining through feature weighting publication-title: International joint conference on artificial intelligence – reference: (pp. 406–417). – year: 1993 ident: bib15 article-title: C4.5: Programs for machine learning – volume: 6 start-page: 37 year: 1991 end-page: 66 ident: bib1 article-title: Instance-based learning algorithms publication-title: Machine Learning – year: 2003 ident: bib11 article-title: Feature selection and document clustering publication-title: A comprehensive survey of text mining – reference: Cai, D., Yu, S., Wen, J. R., & Ma, W. Y. (2003b). Extracting content structure for web pages based on visual representation. In X. Zhou, Y. Zhang, & M. E. Orlowska (Eds.), – start-page: 1042 year: 2005 end-page: 1043 ident: bib5 article-title: A study on combination of block importance and relevance to estimate page relevance publication-title: Proceedings of the 14th international conference on World Wide Web (Special interest tracks and posters) – start-page: 928 year: 2005 end-page: 929 ident: bib10 article-title: Extracting semantic structure of web documents using content and visual information publication-title: Proceedings of the 14th international conference on World Wide Web – year: 2003 ident: 10.1016/j.ipm.2007.11.003_bib11 article-title: Feature selection and document clustering – year: 1999 ident: 10.1016/j.ipm.2007.11.003_bib19 – ident: 10.1016/j.ipm.2007.11.003_bib3 doi: 10.1007/3-540-36901-5_42 – start-page: 133 year: 1982 ident: 10.1016/j.ipm.2007.11.003_bib12 article-title: Reverend bayes on inference engines: a distributed hierarchical approach – start-page: 928 year: 2005 ident: 10.1016/j.ipm.2007.11.003_bib10 article-title: Extracting semantic structure of web documents using content and visual information – year: 1998 ident: 10.1016/j.ipm.2007.11.003_bib9 article-title: A comparison of event models for naive bayes text classification – volume: 6 start-page: 37 issue: 1 year: 1991 ident: 10.1016/j.ipm.2007.11.003_bib1 article-title: Instance-based learning algorithms publication-title: Machine Learning doi: 10.1007/BF00153759 – start-page: 185 year: 1999 ident: 10.1016/j.ipm.2007.11.003_bib13 article-title: Fast training of support vector machines using sequential minimal optimization – ident: 10.1016/j.ipm.2007.11.003_bib2 doi: 10.1007/3-540-36901-5_42 – start-page: 901 year: 2006 ident: 10.1016/j.ipm.2007.11.003_bib4 article-title: Automatic image annotation by incorporating feature hierarchy and boosting to scale up SVM classifiers – ident: 10.1016/j.ipm.2007.11.003_bib14 doi: 10.1145/290941.291008 – start-page: 1042 year: 2005 ident: 10.1016/j.ipm.2007.11.003_bib5 article-title: A study on combination of block importance and relevance to estimate page relevance – start-page: 203 year: 2004 ident: 10.1016/j.ipm.2007.11.003_bib18 article-title: Learning block importance models for web pages – start-page: 43 year: 2003 ident: 10.1016/j.ipm.2007.11.003_bib20 article-title: Web page cleaning for web mining through feature weighting – year: 1993 ident: 10.1016/j.ipm.2007.11.003_bib15 – start-page: 338 year: 1995 ident: 10.1016/j.ipm.2007.11.003_bib6 article-title: Estimating continuous distributions in Bayesian classifiers – start-page: 250 year: 2002 ident: 10.1016/j.ipm.2007.11.003_bib7 article-title: Recognition of common areas in a web page using visual information: a possible application in a page classification – volume: 24 start-page: 513 issue: 5 year: 1998 ident: 10.1016/j.ipm.2007.11.003_bib16 article-title: Term-weighting approaches in automatic text retrieval publication-title: Information Processing and Management doi: 10.1016/0306-4573(88)90021-0 – volume: 18 start-page: 613 issue: 11 year: 1975 ident: 10.1016/j.ipm.2007.11.003_bib17 article-title: A vector space model for automatic indexing publication-title: Communications of the ACM doi: 10.1145/361219.361220 – start-page: 524 year: 2005 ident: 10.1016/j.ipm.2007.11.003_bib8 article-title: A Bayesian hierarchical model for learning natural scene categories |
| SSID | ssj0004512 |
| Score | 1.8898723 |
| Snippet | We present a term weighting approach for improving web page classification, based on the assumption that the images of a web page are those elements which... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1431 |
| SubjectTerms | Algorithms Classification Content analysis Document classification Exact sciences and technology Indexing. Classification. Abstracting Indexing. Classification. Abstracting. Syntheses Information and communication sciences Information and document structure and analysis Information processing and retrieval Information retrieval Information retrieval. Man machine relationship Information science. Documentation Internet Layout Research process. Evaluation Sciences and techniques of general use Studies Term weighting Vector space model Visual layout analysis Web pages Websites Weighting |
| Title | Enhancing web page classification through image-block importance analysis |
| URI | https://dx.doi.org/10.1016/j.ipm.2007.11.003 https://www.proquest.com/docview/194930636 https://www.proquest.com/docview/57630795 |
| Volume | 44 |
| WOSCitedRecordID | wos000257276800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5371 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004512 issn: 0306-4573 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywEJIZ5iKS0-UA5UqZL4keRYwa4oKguHrbS3yE5sdQukodmi_nxmYieb5VHgwCVa-bFR_I3HY3vmG0JeqCiWZahFUBZWBdxq0IOAfKA4Z8YIbiPpkk0ks1m6WGQfvf9806YTSKoqvbrK6v8KNZQB2Bg6-w9w938KBfAbQIcnwA7PvwJ-Up0ihwaesRq9j_piv0ATGX2CHNpdbp7lF6gMNCxnnzBaEg1xFz_geEqGdquPWmq71y62wJ0xSO__OnSgmeIZXJsqah3n8L7toTbKkPXWrJw_wXTj-CHtXVX7sKtQBly4fCSdSnWUjl50-EA_gnUWDdZa2M0lv9Tj7kjh7GBZO7aAA2RaDdl60eou6mcf8unJ8XE-nyzme2xafw0woRhevO-xNw7cm2QrTkSWjsjW4dFk8W5AJh_5Syb3Bd2ld-v-98Obf2e23KlVA5PJuiwoPy3orZUyv0fu-u0FPXRicZ_cMNUDsuODU-hLOsCRerX-kBz1IkNBZCiOGd0UGepFhg5Ehq5FhnYi84icTCfz128Dn2IjKFgqVoFiVmsFe25rFOjuFGao4kVkYcC41shGF2N1qpPSpsqGTCecGyalKWMtRcEek1F1XpknhCqGDh2RKLgtOWgAzUWhyjDVWrKESzUmYTeCeeH55zENyue8czQ8y2HQMS9qAvtSJK0dk1d9l9qRr1zXmHew5N56dFZhDkJ1XbfdDQj7F8XIpCg4NNjuMM39NG_yKOMZiA2TY_K8rwXFjLdtqjLnl00OG3lYPzPx9I8ttsnt9cx6Rkari0uzQ24V31bL5mLXS-13OfewFw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+web+page+classification+through+image-block+importance+analysis&rft.jtitle=Information+processing+%26+management&rft.au=Fersini%2C+E&rft.au=Messina%2C+E&rft.au=Archetti%2C+F&rft.date=2008-07-01&rft.issn=0306-4573&rft.volume=44&rft.issue=4&rft.spage=1431&rft.epage=1447&rft_id=info:doi/10.1016%2Fj.ipm.2007.11.003&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4573&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4573&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4573&client=summon |