Enhancing web page classification through image-block importance analysis

We present a term weighting approach for improving web page classification, based on the assumption that the images of a web page are those elements which mainly attract the attention of the user. This assumption implies that the text contained in the visual block in which an image is located, calle...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information processing & management Ročník 44; číslo 4; s. 1431 - 1447
Hlavní autori: Fersini, E., Messina, E., Archetti, F.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Kidlington Elsevier Ltd 01.07.2008
Elsevier
Elsevier Science Ltd
Predmet:
ISSN:0306-4573, 1873-5371
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We present a term weighting approach for improving web page classification, based on the assumption that the images of a web page are those elements which mainly attract the attention of the user. This assumption implies that the text contained in the visual block in which an image is located, called image-block, should contain significant information about the page contents. In this paper we propose a new metric, called the Inverse Term Importance Metric, aimed at assigning higher weights to important terms contained into important image-blocks identified by performing a visual layout analysis. We propose different methods to estimate the visual image-blocks importance, to smooth the term weight according to the importance of the blocks in which the term is located. The traditional TFxIDF model is modified accordingly and used in the classification task. The effectiveness of this new metric and the proposed block evaluation methods have been validated using different classification algorithms.
AbstractList We present a term weighting approach for improving web page classification, based on the assumption that the images of a web page are those elements which mainly attract the attention of the user. This assumption implies that the text contained in the visual block in which an image is located, called image-block, should contain significant information about the page contents. In this paper we propose a new metric, called the Inverse Term Importance Metric, aimed at assigning higher weights to important terms contained into important image-blocks identified by performing a visual layout analysis. We propose different methods to estimate the visual image-blocks importance, to smooth the term weight according to the importance of the blocks in which the term is located. The traditional TFxIDF model is modified accordingly and used in the classification task. The effectiveness of this new metric and the proposed block evaluation methods have been validated using different classification algorithms. [PUBLICATION ABSTRACT]
We present a term weighting approach for improving web page classification, based on the assumption that the images of a web page are those elements which mainly attract the attention of the user. This assumption implies that the text contained in the visual block in which an image is located, called image-block, should contain significant information about the page contents. In this paper we propose a new metric, called the Inverse Term Importance Metric, aimed at assigning higher weights to important terms contained into important image-blocks identified by performing a visual layout analysis. We propose different methods to estimate the visual image-blocks importance, to smooth the term weight according to the importance of the blocks in which the term is located. The traditional TFxIDF model is modified accordingly and used in the classification task. The effectiveness of this new metric and the proposed block evaluation methods have been validated using different classification algorithms. Adapted from the source document.
We present a term weighting approach for improving web page classification, based on the assumption that the images of a web page are those elements which mainly attract the attention of the user. This assumption implies that the text contained in the visual block in which an image is located, called image-block, should contain significant information about the page contents. In this paper we propose a new metric, called the Inverse Term Importance Metric, aimed at assigning higher weights to important terms contained into important image-blocks identified by performing a visual layout analysis. We propose different methods to estimate the visual image-blocks importance, to smooth the term weight according to the importance of the blocks in which the term is located. The traditional TFxIDF model is modified accordingly and used in the classification task. The effectiveness of this new metric and the proposed block evaluation methods have been validated using different classification algorithms.
Author Archetti, F.
Messina, E.
Fersini, E.
Author_xml – sequence: 1
  givenname: E.
  surname: Fersini
  fullname: Fersini, E.
  email: fersini@disco.unimib.it
  organization: Dipartimento di Informatica Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca, Italy
– sequence: 2
  givenname: E.
  surname: Messina
  fullname: Messina, E.
  organization: Dipartimento di Informatica Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca, Italy
– sequence: 3
  givenname: F.
  surname: Archetti
  fullname: Archetti, F.
  organization: Dipartimento di Informatica Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20444543$$DView record in Pascal Francis
BookMark eNp9kUFPwyAYhomZiXP6A7w1JnprhQKljSezTF2yxIueCTDYqF2p0Gr272Vu8bDDTpB8z0P43vcSjFrXagBuEMwQRMVDndluk-UQsgyhDEJ8BsaoZDilmKERGEMMi5RQhi_AZQg1hJBQlI_BfNauRatsu0p-tEw6sdKJakQI1lgleuvapF97N6zWid3EYSobpz7jvXO-j6JORCuabbDhCpwb0QR9fTgn4ON59j59TRdvL_Pp0yJVuKR9KrCRUpRVZbSgrCwJwYIoZHJGiZSUVlW-G5eSLU0pDMSSEaJxUehlLguq8ATc79_tvPsadOj5xgalm0a02g2BU1ZgyCoawdsjsHaDj78NHFWkioHgIkJ3B0gEJRrjd2EE3vm4rd_yHBJCKMGRQ3tOeReC1-YfQZDvGuA1jw3wXQMcIR4biA47cpTt_zLtvbDNSfNxb-oY5LfVngdldUx7ab1WPV86e8L-BR3eokg
CODEN IPMADK
CitedBy_id crossref_primary_10_1016_j_knosys_2013_12_019
crossref_primary_10_1016_j_jss_2016_02_006
crossref_primary_10_1007_s42979_023_02137_w
crossref_primary_10_1016_j_ins_2015_08_052
crossref_primary_10_1007_s11042_019_08373_8
crossref_primary_10_1007_s00799_015_0150_6
crossref_primary_10_1016_j_ipm_2009_08_003
Cites_doi 10.1007/3-540-36901-5_42
10.1007/BF00153759
10.1145/290941.291008
10.1016/0306-4573(88)90021-0
10.1145/361219.361220
ContentType Journal Article
Copyright 2007 Elsevier Ltd
2015 INIST-CNRS
Copyright Pergamon Press Inc. Jul 2008
Copyright_xml – notice: 2007 Elsevier Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright Pergamon Press Inc. Jul 2008
DBID AAYXX
CITATION
IQODW
E3H
F2A
DOI 10.1016/j.ipm.2007.11.003
DatabaseName CrossRef
Pascal-Francis
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
DatabaseTitle CrossRef
Library and Information Science Abstracts (LISA)
DatabaseTitleList Library and Information Science Abstracts (LISA)
Library and Information Science Abstracts (LISA)

DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
EISSN 1873-5371
EndPage 1447
ExternalDocumentID 1490166381
20444543
10_1016_j_ipm_2007_11_003
S0306457307002117
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0B8
0R~
1B1
1RT
1~.
1~5
29I
4.4
41~
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABPPZ
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHQT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG9
LPU
LY1
M3Y
M41
MO0
MS~
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSO
SSS
SSV
SSZ
T5K
TN5
U5U
UHB
UHS
UNMZH
WUQ
XFK
ZMT
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
E3H
F2A
ID FETCH-LOGICAL-c385t-a3fbba899fea5788443a4c1f2754bb55992ba898b7df8af03b744e366ed2b65c3
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000257276800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-4573
IngestDate Sat Sep 27 23:29:25 EDT 2025
Mon Nov 17 19:51:19 EST 2025
Wed Apr 02 07:16:20 EDT 2025
Tue Nov 18 22:26:12 EST 2025
Sat Nov 29 01:48:35 EST 2025
Fri Feb 23 02:18:39 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Vector space model
Visual layout analysis
Document classification
Term weighting
Image analysis
Automatic classification
Vector space
Bayes method
Web mining
Information extraction
Information retrieval system
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c385t-a3fbba899fea5788443a4c1f2754bb55992ba898b7df8af03b744e366ed2b65c3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 194930636
PQPubID 46166
PageCount 17
ParticipantIDs proquest_miscellaneous_57630795
proquest_journals_194930636
pascalfrancis_primary_20444543
crossref_primary_10_1016_j_ipm_2007_11_003
crossref_citationtrail_10_1016_j_ipm_2007_11_003
elsevier_sciencedirect_doi_10_1016_j_ipm_2007_11_003
PublicationCentury 2000
PublicationDate 2008-07-01
PublicationDateYYYYMMDD 2008-07-01
PublicationDate_xml – month: 07
  year: 2008
  text: 2008-07-01
  day: 01
PublicationDecade 2000
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: Oxford
PublicationTitle Information processing & management
PublicationYear 2008
Publisher Elsevier Ltd
Elsevier
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
– name: Elsevier Science Ltd
References Yi, Liu (bib20) 2003
Salton, Wong, Yang (bib17) 1975; 18
Aha, Kibler, Albert (bib1) 1991; 6
Ponte, J. M., & Croft, W. B. (1998). A language modeling approach to information retrieval. In
Li, Perona (bib8) 2005
Gao, Fan, Xue, Jain (bib4) 2006
Huang, Yu, Li, Xue, Zhang (bib5) 2005
Nicholas, Dhillon, Kogan (bib11) 2003
Song, Liu, Wen, Ma (bib18) 2004
Pearl (bib12) 1982
(pp. 275–281).
(pp. 406–417).
McCallum, Nigam (bib9) 1998
Salton, Buckley (bib16) 1998; 24
John, Langely (bib6) 1995
Kovacevic, Diligenti, Gori, Milutinovic (bib7) 2002
Platt (bib13) 1999
Quinlan (bib15) 1993
Mehta, Mitra, Karnick (bib10) 2005
Cai, D., Yu, S., Wen, J. R., & Ma, W. Y. (2003a). Extracting content structure for web pages based on visual representation. Technical Report MSR-TR-2003-79.
Cai, D., Yu, S., Wen, J. R., & Ma, W. Y. (2003b). Extracting content structure for web pages based on visual representation. In X. Zhou, Y. Zhang, & M. E. Orlowska (Eds.)
Witten, Frank (bib19) 1999
10.1016/j.ipm.2007.11.003_bib2
10.1016/j.ipm.2007.11.003_bib3
Pearl (10.1016/j.ipm.2007.11.003_bib12) 1982
Quinlan (10.1016/j.ipm.2007.11.003_bib15) 1993
Witten (10.1016/j.ipm.2007.11.003_bib19) 1999
Aha (10.1016/j.ipm.2007.11.003_bib1) 1991; 6
McCallum (10.1016/j.ipm.2007.11.003_bib9) 1998
Huang (10.1016/j.ipm.2007.11.003_bib5) 2005
10.1016/j.ipm.2007.11.003_bib14
Kovacevic (10.1016/j.ipm.2007.11.003_bib7) 2002
Song (10.1016/j.ipm.2007.11.003_bib18) 2004
Mehta (10.1016/j.ipm.2007.11.003_bib10) 2005
Salton (10.1016/j.ipm.2007.11.003_bib17) 1975; 18
Li (10.1016/j.ipm.2007.11.003_bib8) 2005
Nicholas (10.1016/j.ipm.2007.11.003_bib11) 2003
Platt (10.1016/j.ipm.2007.11.003_bib13) 1999
John (10.1016/j.ipm.2007.11.003_bib6) 1995
Salton (10.1016/j.ipm.2007.11.003_bib16) 1998; 24
Yi (10.1016/j.ipm.2007.11.003_bib20) 2003
Gao (10.1016/j.ipm.2007.11.003_bib4) 2006
References_xml – reference: Ponte, J. M., & Croft, W. B. (1998). A language modeling approach to information retrieval. In
– reference: Cai, D., Yu, S., Wen, J. R., & Ma, W. Y. (2003a). Extracting content structure for web pages based on visual representation. Technical Report MSR-TR-2003-79.
– start-page: 338
  year: 1995
  end-page: 345
  ident: bib6
  article-title: Estimating continuous distributions in Bayesian classifiers
  publication-title: Proceedings of the eleventh conference on uncertainty in artificial intelligence
– year: 1998
  ident: bib9
  article-title: A comparison of event models for naive bayes text classification
  publication-title: Proceedings of the fifteenth national conference on artificial intelligence
– volume: 24
  start-page: 513
  year: 1998
  end-page: 523
  ident: bib16
  article-title: Term-weighting approaches in automatic text retrieval
  publication-title: Information Processing and Management
– start-page: 250
  year: 2002
  end-page: 257
  ident: bib7
  article-title: Recognition of common areas in a web page using visual information: a possible application in a page classification
  publication-title: Proceedings of the 2002 IEEE international conference on data mining
– reference: (pp. 275–281).
– start-page: 185
  year: 1999
  end-page: 208
  ident: bib13
  article-title: Fast training of support vector machines using sequential minimal optimization
  publication-title: Advances in kernel methods: support vector learning
– volume: 18
  start-page: 613
  year: 1975
  end-page: 620
  ident: bib17
  article-title: A vector space model for automatic indexing
  publication-title: Communications of the ACM
– start-page: 524
  year: 2005
  end-page: 531
  ident: bib8
  article-title: A Bayesian hierarchical model for learning natural scene categories
  publication-title: Proceeding of 2005 IEEE computer society conference on computer vision and pattern recognition
– year: 1999
  ident: bib19
  article-title: Data mining: practical machine learning tools and techniques with java implementations
– start-page: 901
  year: 2006
  end-page: 910
  ident: bib4
  article-title: Automatic image annotation by incorporating feature hierarchy and boosting to scale up SVM classifiers
  publication-title: Proceedings of the 14th annual ACM international conference on multimedia
– start-page: 133
  year: 1982
  end-page: 136
  ident: bib12
  article-title: Reverend bayes on inference engines: a distributed hierarchical approach
  publication-title: Proceedings of the national conference on artificial intelligence
– start-page: 203
  year: 2004
  end-page: 211
  ident: bib18
  article-title: Learning block importance models for web pages
  publication-title: Proceedings of the 13th international conference on World Wide Web
– start-page: 43
  year: 2003
  end-page: 50
  ident: bib20
  article-title: Web page cleaning for web mining through feature weighting
  publication-title: International joint conference on artificial intelligence
– reference: (pp. 406–417).
– year: 1993
  ident: bib15
  article-title: C4.5: Programs for machine learning
– volume: 6
  start-page: 37
  year: 1991
  end-page: 66
  ident: bib1
  article-title: Instance-based learning algorithms
  publication-title: Machine Learning
– year: 2003
  ident: bib11
  article-title: Feature selection and document clustering
  publication-title: A comprehensive survey of text mining
– reference: Cai, D., Yu, S., Wen, J. R., & Ma, W. Y. (2003b). Extracting content structure for web pages based on visual representation. In X. Zhou, Y. Zhang, & M. E. Orlowska (Eds.),
– start-page: 1042
  year: 2005
  end-page: 1043
  ident: bib5
  article-title: A study on combination of block importance and relevance to estimate page relevance
  publication-title: Proceedings of the 14th international conference on World Wide Web (Special interest tracks and posters)
– start-page: 928
  year: 2005
  end-page: 929
  ident: bib10
  article-title: Extracting semantic structure of web documents using content and visual information
  publication-title: Proceedings of the 14th international conference on World Wide Web
– year: 2003
  ident: 10.1016/j.ipm.2007.11.003_bib11
  article-title: Feature selection and document clustering
– year: 1999
  ident: 10.1016/j.ipm.2007.11.003_bib19
– ident: 10.1016/j.ipm.2007.11.003_bib3
  doi: 10.1007/3-540-36901-5_42
– start-page: 133
  year: 1982
  ident: 10.1016/j.ipm.2007.11.003_bib12
  article-title: Reverend bayes on inference engines: a distributed hierarchical approach
– start-page: 928
  year: 2005
  ident: 10.1016/j.ipm.2007.11.003_bib10
  article-title: Extracting semantic structure of web documents using content and visual information
– year: 1998
  ident: 10.1016/j.ipm.2007.11.003_bib9
  article-title: A comparison of event models for naive bayes text classification
– volume: 6
  start-page: 37
  issue: 1
  year: 1991
  ident: 10.1016/j.ipm.2007.11.003_bib1
  article-title: Instance-based learning algorithms
  publication-title: Machine Learning
  doi: 10.1007/BF00153759
– start-page: 185
  year: 1999
  ident: 10.1016/j.ipm.2007.11.003_bib13
  article-title: Fast training of support vector machines using sequential minimal optimization
– ident: 10.1016/j.ipm.2007.11.003_bib2
  doi: 10.1007/3-540-36901-5_42
– start-page: 901
  year: 2006
  ident: 10.1016/j.ipm.2007.11.003_bib4
  article-title: Automatic image annotation by incorporating feature hierarchy and boosting to scale up SVM classifiers
– ident: 10.1016/j.ipm.2007.11.003_bib14
  doi: 10.1145/290941.291008
– start-page: 1042
  year: 2005
  ident: 10.1016/j.ipm.2007.11.003_bib5
  article-title: A study on combination of block importance and relevance to estimate page relevance
– start-page: 203
  year: 2004
  ident: 10.1016/j.ipm.2007.11.003_bib18
  article-title: Learning block importance models for web pages
– start-page: 43
  year: 2003
  ident: 10.1016/j.ipm.2007.11.003_bib20
  article-title: Web page cleaning for web mining through feature weighting
– year: 1993
  ident: 10.1016/j.ipm.2007.11.003_bib15
– start-page: 338
  year: 1995
  ident: 10.1016/j.ipm.2007.11.003_bib6
  article-title: Estimating continuous distributions in Bayesian classifiers
– start-page: 250
  year: 2002
  ident: 10.1016/j.ipm.2007.11.003_bib7
  article-title: Recognition of common areas in a web page using visual information: a possible application in a page classification
– volume: 24
  start-page: 513
  issue: 5
  year: 1998
  ident: 10.1016/j.ipm.2007.11.003_bib16
  article-title: Term-weighting approaches in automatic text retrieval
  publication-title: Information Processing and Management
  doi: 10.1016/0306-4573(88)90021-0
– volume: 18
  start-page: 613
  issue: 11
  year: 1975
  ident: 10.1016/j.ipm.2007.11.003_bib17
  article-title: A vector space model for automatic indexing
  publication-title: Communications of the ACM
  doi: 10.1145/361219.361220
– start-page: 524
  year: 2005
  ident: 10.1016/j.ipm.2007.11.003_bib8
  article-title: A Bayesian hierarchical model for learning natural scene categories
SSID ssj0004512
Score 1.8898723
Snippet We present a term weighting approach for improving web page classification, based on the assumption that the images of a web page are those elements which...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1431
SubjectTerms Algorithms
Classification
Content analysis
Document classification
Exact sciences and technology
Indexing. Classification. Abstracting
Indexing. Classification. Abstracting. Syntheses
Information and communication sciences
Information and document structure and analysis
Information processing and retrieval
Information retrieval
Information retrieval. Man machine relationship
Information science. Documentation
Internet
Layout
Research process. Evaluation
Sciences and techniques of general use
Studies
Term weighting
Vector space model
Visual layout analysis
Web pages
Websites
Weighting
Title Enhancing web page classification through image-block importance analysis
URI https://dx.doi.org/10.1016/j.ipm.2007.11.003
https://www.proquest.com/docview/194930636
https://www.proquest.com/docview/57630795
Volume 44
WOSCitedRecordID wos000257276800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5371
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004512
  issn: 0306-4573
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywEJIZ5iKS0-UA5UqZL4keRYwa4oKguHrbS3yE5sdQukodmi_nxmYieb5VHgwCVa-bFR_I3HY3vmG0JeqCiWZahFUBZWBdxq0IOAfKA4Z8YIbiPpkk0ks1m6WGQfvf9806YTSKoqvbrK6v8KNZQB2Bg6-w9w938KBfAbQIcnwA7PvwJ-Up0ihwaesRq9j_piv0ATGX2CHNpdbp7lF6gMNCxnnzBaEg1xFz_geEqGdquPWmq71y62wJ0xSO__OnSgmeIZXJsqah3n8L7toTbKkPXWrJw_wXTj-CHtXVX7sKtQBly4fCSdSnWUjl50-EA_gnUWDdZa2M0lv9Tj7kjh7GBZO7aAA2RaDdl60eou6mcf8unJ8XE-nyzme2xafw0woRhevO-xNw7cm2QrTkSWjsjW4dFk8W5AJh_5Syb3Bd2ld-v-98Obf2e23KlVA5PJuiwoPy3orZUyv0fu-u0FPXRicZ_cMNUDsuODU-hLOsCRerX-kBz1IkNBZCiOGd0UGepFhg5Ehq5FhnYi84icTCfz128Dn2IjKFgqVoFiVmsFe25rFOjuFGao4kVkYcC41shGF2N1qpPSpsqGTCecGyalKWMtRcEek1F1XpknhCqGDh2RKLgtOWgAzUWhyjDVWrKESzUmYTeCeeH55zENyue8czQ8y2HQMS9qAvtSJK0dk1d9l9qRr1zXmHew5N56dFZhDkJ1XbfdDQj7F8XIpCg4NNjuMM39NG_yKOMZiA2TY_K8rwXFjLdtqjLnl00OG3lYPzPx9I8ttsnt9cx6Rkari0uzQ24V31bL5mLXS-13OfewFw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+web+page+classification+through+image-block+importance+analysis&rft.jtitle=Information+processing+%26+management&rft.au=Fersini%2C+E&rft.au=Messina%2C+E&rft.au=Archetti%2C+F&rft.date=2008-07-01&rft.issn=0306-4573&rft.volume=44&rft.issue=4&rft.spage=1431&rft.epage=1447&rft_id=info:doi/10.1016%2Fj.ipm.2007.11.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4573&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4573&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4573&client=summon