Enhancing web page classification through image-block importance analysis
We present a term weighting approach for improving web page classification, based on the assumption that the images of a web page are those elements which mainly attract the attention of the user. This assumption implies that the text contained in the visual block in which an image is located, calle...
Saved in:
| Published in: | Information processing & management Vol. 44; no. 4; pp. 1431 - 1447 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Kidlington
Elsevier Ltd
01.07.2008
Elsevier Elsevier Science Ltd |
| Subjects: | |
| ISSN: | 0306-4573, 1873-5371 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We present a term weighting approach for improving web page classification, based on the assumption that the images of a web page are those elements which mainly attract the attention of the user. This assumption implies that the text contained in the visual block in which an image is located, called image-block, should contain significant information about the page contents. In this paper we propose a new metric, called the Inverse Term Importance Metric, aimed at assigning higher weights to important terms contained into important image-blocks identified by performing a visual layout analysis. We propose different methods to estimate the visual image-blocks importance, to smooth the term weight according to the importance of the blocks in which the term is located. The traditional TFxIDF model is modified accordingly and used in the classification task. The effectiveness of this new metric and the proposed block evaluation methods have been validated using different classification algorithms. |
|---|---|
| Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0306-4573 1873-5371 |
| DOI: | 10.1016/j.ipm.2007.11.003 |