Complexity and performance of an Augmented Lagrangian algorithm
Algencan is a well established safeguarded Augmented Lagrangian algorithm introduced in [R. Andreani, E. G. Birgin, J. M. Martínez, and M. L. Schuverdt, On Augmented Lagrangian methods with general lower-level constraints, SIAM J. Optim. 18 (2008), pp. 1286-1309]. Complexity results that report its...
Saved in:
| Published in: | Optimization methods & software Vol. 35; no. 5; pp. 885 - 920 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Abingdon
Taylor & Francis
02.09.2020
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 1055-6788, 1029-4937 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Algencan is a well established safeguarded Augmented Lagrangian algorithm introduced in [R. Andreani, E. G. Birgin, J. M. Martínez, and M. L. Schuverdt, On Augmented Lagrangian methods with general lower-level constraints, SIAM J. Optim. 18 (2008), pp. 1286-1309]. Complexity results that report its worst-case behaviour in terms of iterations and evaluations of functions and derivatives that are necessary to obtain suitable stopping criteria are presented in this work. In addition, its computational performance considering all problems from the CUTEst collection is presented, which shows that it is a useful tool for solving large-scale constrained optimization problems. |
|---|---|
| AbstractList | Algencan is a well established safeguarded Augmented Lagrangian algorithm introduced in [R. Andreani, E. G. Birgin, J. M. Martínez, and M. L. Schuverdt, On Augmented Lagrangian methods with general lower-level constraints, SIAM J. Optim. 18 (2008), pp. 1286–1309]. Complexity results that report its worst-case behaviour in terms of iterations and evaluations of functions and derivatives that are necessary to obtain suitable stopping criteria are presented in this work. In addition, its computational performance considering all problems from the CUTEst collection is presented, which shows that it is a useful tool for solving large-scale constrained optimization problems. |
| Author | Martínez, J. M. Birgin, E. G. |
| Author_xml | – sequence: 1 givenname: E. G. orcidid: 0000-0002-7466-7663 surname: Birgin fullname: Birgin, E. G. email: egbirgin@ime.usp.br organization: Dept. of Computer Science, Institute of Mathematics and Statistics, University of São Paulo – sequence: 2 givenname: J. M. orcidid: 0000-0003-3331-368X surname: Martínez fullname: Martínez, J. M. organization: Dept. of Applied Mathematics, Institute of Mathematics, Statistics and Scientific Computing, State University of Campinas |
| BookMark | eNqFkF9LwzAUxYNMcJt-BKHgc2fSJE2CDzqG_2Dgiz6HNE1qRpvMNEP37W2dvvigT_dyOOfcy28GJj54A8A5ggsEObxEkNKScb4oYDFIjJSiLI7AFMFC5ERgNhl3SvPRdAJmfb-BEBJEyim4XoVu25oPl_aZ8nW2NdGG2CmvTRbsIGXLXdMZn0ydrVUTlW_cIKq2CdGl1-4UHFvV9ubse87By93t8-ohXz_dP66W61xjTlOuCl1XJcEVYcNX3CBsjLCqRpoVuiK6JqWlnFohEFW1UVTXGFfMcK6YUYLhObg49G5jeNuZPslN2EU_nJQFwYIKKDAdXPTg0jH0fTRWbqPrVNxLBOXISv6wkiMr-c1qyF39ymmXVHLBp6hc-2_65pB2_ovde4htLZPatyHagZh2vcR_V3wCd86Eng |
| CitedBy_id | crossref_primary_10_1007_s12532_021_00207_9 crossref_primary_10_1093_imanum_draa021 crossref_primary_10_1007_s10589_024_00572_w crossref_primary_10_1007_s10898_022_01168_6 crossref_primary_10_1137_20M135950X crossref_primary_10_1007_s10107_024_02163_3 crossref_primary_10_1007_s10898_025_01521_5 crossref_primary_10_1287_moor_2022_0104 crossref_primary_10_1080_02331934_2024_2392019 crossref_primary_10_1080_10556788_2025_2453111 crossref_primary_10_1007_s10107_024_02062_7 crossref_primary_10_1007_s11042_025_21124_2 crossref_primary_10_1007_s10898_024_01456_3 crossref_primary_10_1007_s11075_023_01647_1 crossref_primary_10_1007_s10915_021_01409_y crossref_primary_10_1137_22M1489824 crossref_primary_10_1145_3583559 crossref_primary_10_1007_s10107_023_02000_z crossref_primary_10_1007_s10957_024_02421_6 crossref_primary_10_3390_ijerph17186437 crossref_primary_10_1007_s11075_020_00928_3 crossref_primary_10_1287_moor_2021_1165 crossref_primary_10_1016_j_measurement_2023_113509 crossref_primary_10_1007_s10957_022_02003_4 crossref_primary_10_1109_TMC_2024_3521934 crossref_primary_10_3390_stats4030033 crossref_primary_10_1007_s11081_022_09747_y crossref_primary_10_1109_LWC_2020_3043365 crossref_primary_10_1137_21M1426067 crossref_primary_10_1090_mcom_3839 crossref_primary_10_1109_TVT_2024_3409890 crossref_primary_10_1080_10556788_2020_1786564 crossref_primary_10_1007_s10957_025_02731_3 crossref_primary_10_1007_s10957_025_02734_0 |
| Cites_doi | 10.18637/jss.v060.i03 10.1137/1.9780898719857 10.1080/10556788.2011.556634 10.1007/s10107-014-0784-y 10.1007/978-3-662-12211-2 10.1007/s10589-007-9050-z 10.1080/02331930903578700 10.1080/10556780701577730 10.1145/502800.502803 10.1137/050635225 10.1287/moor.2017.0879 10.1137/140990309 10.1007/s10107-016-0994-6 10.1023/A:1019928808826 10.1137/120868359 10.1007/BF01581275 10.1080/02331930500100270 10.1137/S1052623493251463 10.1016/j.orl.2017.09.005 10.1137/10081085X 10.1023/A:1008777829180 10.1287/moor.25.2.214.12222 10.1007/s10107-012-0528-9 10.1007/BF00927673 10.1007/s10957-017-1071-x 10.1007/s10107-009-0264-y 10.1016/0377-0427(94)00088-I 10.1093/imanum/drx002 10.1287/moor.1.2.97 10.1007/s10589-014-9687-3 10.1109/TAC.2017.2658438 10.1137/1.9781611973365 10.1137/17M1147330 10.1080/10556788.2013.841692 10.1137/15M1008488 10.1080/10556788.2015.1071813 10.1137/S1052623497330963 10.1007/s101070100263 10.1007/s10107-004-0559-y 10.1007/s10107-006-0077-1 10.1137/17M1127107 10.1007/s10589-011-9396-0 10.1137/090777189 10.1080/10556788.2015.1025401 10.1137/060654797 10.1007/s10589-009-9240-y 10.1137/11082381X 10.1137/0312021 |
| ContentType | Journal Article |
| Copyright | 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 2020 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1080/10556788.2020.1746962 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1029-4937 |
| EndPage | 920 |
| ExternalDocumentID | 10_1080_10556788_2020_1746962 1746962 |
| Genre | Research Article |
| GroupedDBID | .4S .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EDO EMK EPL EST ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P KYCEM LJTGL M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c385t-a2cdb643b471028e13ee9fad1c72cb4cd46f585f9915adea5cd33b7e88a7ea973 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000523671200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1055-6788 |
| IngestDate | Wed Aug 13 08:35:24 EDT 2025 Sat Nov 29 02:36:07 EST 2025 Tue Nov 18 22:25:27 EST 2025 Mon Oct 20 23:49:17 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c385t-a2cdb643b471028e13ee9fad1c72cb4cd46f585f9915adea5cd33b7e88a7ea973 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3331-368X 0000-0002-7466-7663 |
| OpenAccessLink | http://dx.doi.org/10.1080/10556788.2020.1746962 |
| PQID | 2439590935 |
| PQPubID | 186278 |
| PageCount | 36 |
| ParticipantIDs | proquest_journals_2439590935 crossref_primary_10_1080_10556788_2020_1746962 crossref_citationtrail_10_1080_10556788_2020_1746962 informaworld_taylorfrancis_310_1080_10556788_2020_1746962 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-02 |
| PublicationDateYYYYMMDD | 2020-09-02 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Optimization methods & software |
| PublicationYear | 2020 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0030 Fiacco A.V. (CIT0037) 1968 CIT0032 CIT0031 Dostál Z. (CIT0034) 2017; 15 CIT0036 CIT0035 CIT0039 CIT0041 CIT0040 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0052 CIT0051 CIT0010 Dostál Z. (CIT0033) 2009; 23 CIT0053 CIT0012 CIT0011 CIT0055 Sun W. (CIT0056) 2006 CIT0014 CIT0013 CIT0057 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0023 CIT0022 CIT0025 CIT0024 CIT0027 CIT0026 CIT0029 CIT0028 Fletcher R. (CIT0038) 1987 Solodov M.V. (CIT0054) 1999; 6 |
| References_xml | – ident: CIT0024 doi: 10.18637/jss.v060.i03 – ident: CIT0029 doi: 10.1137/1.9780898719857 – volume: 23 volume-title: Optimal Quadratic Programming Algorithms year: 2009 ident: CIT0033 – ident: CIT0014 doi: 10.1080/10556788.2011.556634 – volume: 15 start-page: 215 year: 2017 ident: CIT0034 publication-title: Adv. Electr. Electron. Eng. – ident: CIT0031 doi: 10.1007/s10107-014-0784-y – ident: CIT0028 doi: 10.1007/978-3-662-12211-2 – ident: CIT0017 doi: 10.1007/s10589-007-9050-z – ident: CIT0005 doi: 10.1080/02331930903578700 – ident: CIT0018 doi: 10.1080/10556780701577730 – ident: CIT0023 doi: 10.1145/502800.502803 – ident: CIT0042 doi: 10.1137/050635225 – ident: CIT0007 doi: 10.1287/moor.2017.0879 – volume: 6 start-page: 323 year: 1999 ident: CIT0054 publication-title: J. Convex Anal. – ident: CIT0044 doi: 10.1137/140990309 – ident: CIT0008 doi: 10.1007/s10107-016-0994-6 – volume-title: Nonlinear Programming: Sequential Unconstrained Minimization Techniques year: 1968 ident: CIT0037 – ident: CIT0016 doi: 10.1023/A:1019928808826 – ident: CIT0046 doi: 10.1137/120868359 – ident: CIT0050 doi: 10.1007/BF01581275 – ident: CIT0011 doi: 10.1080/02331930500100270 – ident: CIT0027 doi: 10.1137/S1052623493251463 – ident: CIT0047 doi: 10.1016/j.orl.2017.09.005 – ident: CIT0036 doi: 10.1137/10081085X – ident: CIT0053 doi: 10.1023/A:1008777829180 – ident: CIT0055 doi: 10.1287/moor.25.2.214.12222 – ident: CIT0035 doi: 10.1007/s10107-012-0528-9 – ident: CIT0043 doi: 10.1007/BF00927673 – ident: CIT0013 doi: 10.1007/s10957-017-1071-x – ident: CIT0015 doi: 10.1007/s10107-009-0264-y – ident: CIT0048 doi: 10.1016/0377-0427(94)00088-I – volume-title: Practical Methods of Optimization year: 1987 ident: CIT0038 – ident: CIT0039 doi: 10.1093/imanum/drx002 – ident: CIT0052 doi: 10.1287/moor.1.2.97 – ident: CIT0041 – ident: CIT0040 doi: 10.1007/s10589-014-9687-3 – volume-title: Optimization Theory and Methods: Nonlinear Programming year: 2006 ident: CIT0056 – ident: CIT0026 doi: 10.1109/TAC.2017.2658438 – ident: CIT0020 doi: 10.1137/1.9781611973365 – ident: CIT0004 doi: 10.1137/17M1147330 – ident: CIT0009 doi: 10.1080/10556788.2013.841692 – ident: CIT0006 doi: 10.1137/15M1008488 – ident: CIT0045 – ident: CIT0030 doi: 10.1080/10556788.2015.1071813 – ident: CIT0022 doi: 10.1137/S1052623497330963 – ident: CIT0049 – ident: CIT0032 doi: 10.1007/s101070100263 – ident: CIT0057 doi: 10.1007/s10107-004-0559-y – ident: CIT0002 doi: 10.1007/s10107-006-0077-1 – ident: CIT0021 doi: 10.1137/17M1127107 – ident: CIT0019 doi: 10.1007/s10589-011-9396-0 – ident: CIT0010 doi: 10.1137/090777189 – ident: CIT0012 doi: 10.1080/10556788.2015.1025401 – ident: CIT0001 doi: 10.1137/060654797 – ident: CIT0003 doi: 10.1007/s10589-009-9240-y – ident: CIT0025 doi: 10.1137/11082381X – ident: CIT0051 doi: 10.1137/0312021 |
| SSID | ssj0004146 |
| Score | 2.4803152 |
| Snippet | Algencan is a well established safeguarded Augmented Lagrangian algorithm introduced in [R. Andreani, E. G. Birgin, J. M. Martínez, and M. L. Schuverdt, On... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 885 |
| SubjectTerms | Algorithms Augmented Lagrangian methods Complexity Constraints Nonlinear programming numerical experiments Optimization |
| Title | Complexity and performance of an Augmented Lagrangian algorithm |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10556788.2020.1746962 https://www.proquest.com/docview/2439590935 |
| Volume | 35 |
| WOSCitedRecordID | wos000523671200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor and Francis Online Journals customDbUrl: eissn: 1029-4937 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004146 issn: 1055-6788 databaseCode: TFW dateStart: 19920101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT8IwFG8M8aAHv40omh68Tlnb0fVkiJF4IMQDKremX5skCASGif-9bdcJxBgOetuWvG55fZ_re78HwLUhWgiVkMjQWEcEaRwxyRJ7ZVKmCMHUzyF76dJeLx0M2FOoJpyHskqXQ2clUIS31U65hZxXFXG3fqajTd1sdoeariKnxbwVtq7fqWa_87rsjAz9RZYiciRVD89vq6x5pzXs0h-22jugzv4_fPoB2AvRJ2yX4nIItsz4COyuYBIegztnIRxKZvEJ7WvgdNlZACeZfQTbi9wjeWrYFbl1dbmVMChG-WQ2LN7eT8Bz56F__xiFKQuRwmlSRAIpLW1cIokPNkyMjWGZ0LGiSEmiNGllNqfIbCCZCG1EojTGkpo0FdQIRvEpqI0nY3MGYKxjy_BEIenOU6VgKYmlQg4LuUlVrOuAVNzlKkCQu0kYIx4HpNKKP9zxhwf-1MHNN9m0xODYRMBWt44X_udHVk4q4XgDbaPaZx7Uec6RDdsS5s6Mz_-w9AXYcbe-Qg01QK2YLcwl2FYfxXA-u_KC-wVGGedz |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT8IwFG8MmqgHv40oag9ep6zr2HoyxEgwTk6o3Jqu7SYJAoFh4n9vX7cJxBgOelu6vG55fX0f7Xu_h9CVpkoI6VNHB65yKFGew2LmmycdMkmpF9g-ZC9R0OmEvR5brIWBtEqIoZMcKMLqatjccBhdpsTd2KaOJnYz4R2pQ0pOg4EaXveNrQX8_G7rdV4bWVQYGRIHaMoqnt-mWbJPS-ilP7S1NUGt3f_4-T20UziguJlLzD5a08MDtL0AS3iIbkFJAFBm9onNd_B4XlyAR4kZws1ZasE8FY5EaqxdaoQMi0E6mvSzt_cj9Ny67961naLRgiO90M8cQaSKjWsSU-tvaNfTmiVCuTIgMqZS0UZiworE-JK-UFr4UnleHOgwFIEWLPCOUWU4GuoThF3lGo77ksRwpRoLFlI3lgTgkOuBdFUV0ZK9XBYo5NAMY8DdAqy05A8H_vCCP1V0_U02zmE4VhGwxbXjmT3_SPJmJdxbQVsrF5oXO3rKifHcfAbXxqd_mPoSbba7TxGPHjqPZ2gLXtmENVJDlWwy0-doQ35k_enkwkrxFwOe650 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yRfTgb3E6NQev1TVJ1-YkQy2KY-wwdbeQJmkdzG1sneB_b5KmbkPEg95Ky0vLy8vL95r3vgfAhSKScxEQT4W-9AiS2KMJDfSViqggBIe2D9lzK2y3o16Pdlw24dSlVZoYOi2IIqyvNot7LNMyI-7K9nTUoZuO7lDdZOQ0qPHCqxo6N4yRd-OXeWmkKzDSIp6RKYt4fhpmaXtaIi_95qztDhRv_8O374AtBz9hs7CXXbCihntgc4GUcB9cGxdhaDLzD6hfA8fz0gI4SvUt2JxllspTwhbP9F6XaRODfJCNJv389e0APMV33Zt7z7VZ8ASOgtzjSMhEA5OEWLShfKwUTbn0RYhEQoQkjVQHFalGkgGXigdCYpyEKop4qDgN8SGoDEdDdQSgL32t8ECgxByoJpxGxE8EMmTI9VD4sgpIqV0mHAe5aYUxYL6jKi31w4x-mNNPFVx-iY0LEo7fBOji1LHc_v1Ii1YlDP8iWyvnmbn1PGVI47aAmkPj4z8MfQ7WO7cxaz20H0_Ahnlis9VQDVTyyUydgjXxnvenkzNrw59CdOpP |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complexity+and+performance+of+an+Augmented+Lagrangian+algorithm&rft.jtitle=Optimization+methods+%26+software&rft.au=Birgin%2C+E.+G.&rft.au=Mart%C3%ADnez%2C+J.+M.&rft.date=2020-09-02&rft.issn=1055-6788&rft.eissn=1029-4937&rft.volume=35&rft.issue=5&rft.spage=885&rft.epage=920&rft_id=info:doi/10.1080%2F10556788.2020.1746962&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10556788_2020_1746962 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-6788&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-6788&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-6788&client=summon |