On the Aubin property of solution maps to parameterized variational systems with implicit constraints
In the paper, a new sufficient condition for the Aubin property to a class of parameterized variational systems is derived. In these systems, the constraints depend both on the parameter as well as on the decision variable itself and they include, e.g. parameter-dependent quasi-variational inequalit...
Uloženo v:
| Vydáno v: | Optimization Ročník 69; číslo 7-8; s. 1681 - 1701 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia
Taylor & Francis
02.08.2020
Taylor & Francis LLC |
| Témata: | |
| ISSN: | 0233-1934, 1029-4945 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In the paper, a new sufficient condition for the Aubin property to a class of parameterized variational systems is derived. In these systems, the constraints depend both on the parameter as well as on the decision variable itself and they include, e.g. parameter-dependent quasi-variational inequalities and implicit complementarity problems. The result is based on a general condition ensuring the Aubin property of implicitly defined multifunctions which employs the recently introduced notion of the directional limiting coderivative. Our final condition can be verified, however, without an explicit computation of these coderivatives. The procedure is illustrated by an example. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0233-1934 1029-4945 |
| DOI: | 10.1080/02331934.2019.1657427 |