On the Aubin property of solution maps to parameterized variational systems with implicit constraints
In the paper, a new sufficient condition for the Aubin property to a class of parameterized variational systems is derived. In these systems, the constraints depend both on the parameter as well as on the decision variable itself and they include, e.g. parameter-dependent quasi-variational inequalit...
Gespeichert in:
| Veröffentlicht in: | Optimization Jg. 69; H. 7-8; S. 1681 - 1701 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Philadelphia
Taylor & Francis
02.08.2020
Taylor & Francis LLC |
| Schlagworte: | |
| ISSN: | 0233-1934, 1029-4945 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In the paper, a new sufficient condition for the Aubin property to a class of parameterized variational systems is derived. In these systems, the constraints depend both on the parameter as well as on the decision variable itself and they include, e.g. parameter-dependent quasi-variational inequalities and implicit complementarity problems. The result is based on a general condition ensuring the Aubin property of implicitly defined multifunctions which employs the recently introduced notion of the directional limiting coderivative. Our final condition can be verified, however, without an explicit computation of these coderivatives. The procedure is illustrated by an example. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0233-1934 1029-4945 |
| DOI: | 10.1080/02331934.2019.1657427 |