MINLP formulations for continuous piecewise linear function fitting

We consider a nonconvex mixed-integer nonlinear programming (MINLP) model proposed by Goldberg et al. (Comput Optim Appl 58:523–541, 2014. https://doi.org/10.1007/s10589-014-9647-y) for piecewise linear function fitting. We show that this MINLP model is incomplete and can result in a piecewise linea...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational optimization and applications Ročník 79; číslo 1; s. 223 - 233
Hlavní autoři: Goldberg, Noam, Rebennack, Steffen, Kim, Youngdae, Krasko, Vitaliy, Leyffer, Sven
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Springer US 01.05.2021
Springer Nature B.V
Témata:
ISSN:1573-2894, 0926-6003, 1573-2894
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider a nonconvex mixed-integer nonlinear programming (MINLP) model proposed by Goldberg et al. (Comput Optim Appl 58:523–541, 2014. https://doi.org/10.1007/s10589-014-9647-y) for piecewise linear function fitting. We show that this MINLP model is incomplete and can result in a piecewise linear curve that is not the graph of a function, because it misses a set of necessary constraints. We provide two counterexamples to illustrate this effect, and propose three alternative models that correct this behavior. We investigate the theoretical relationship between these models and evaluate their computational performance.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1573-2894
0926-6003
1573-2894
DOI:10.1007/s10589-021-00268-5