MINLP formulations for continuous piecewise linear function fitting

We consider a nonconvex mixed-integer nonlinear programming (MINLP) model proposed by Goldberg et al. (Comput Optim Appl 58:523–541, 2014. https://doi.org/10.1007/s10589-014-9647-y) for piecewise linear function fitting. We show that this MINLP model is incomplete and can result in a piecewise linea...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational optimization and applications Ročník 79; číslo 1; s. 223 - 233
Hlavní autori: Goldberg, Noam, Rebennack, Steffen, Kim, Youngdae, Krasko, Vitaliy, Leyffer, Sven
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY Springer US 01.05.2021
Springer Nature B.V
Predmet:
ISSN:1573-2894, 0926-6003, 1573-2894
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We consider a nonconvex mixed-integer nonlinear programming (MINLP) model proposed by Goldberg et al. (Comput Optim Appl 58:523–541, 2014. https://doi.org/10.1007/s10589-014-9647-y) for piecewise linear function fitting. We show that this MINLP model is incomplete and can result in a piecewise linear curve that is not the graph of a function, because it misses a set of necessary constraints. We provide two counterexamples to illustrate this effect, and propose three alternative models that correct this behavior. We investigate the theoretical relationship between these models and evaluate their computational performance.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1573-2894
0926-6003
1573-2894
DOI:10.1007/s10589-021-00268-5