Optimality Conditions for Convex Semi-infinite Programming Problems with Finitely Representable Compact Index Sets

In the present paper, we analyze a class of convex semi-infinite programming problems with arbitrary index sets defined by a finite number of nonlinear inequalities. The analysis is carried out by employing the constructive approach, which, in turn, relies on the notions of immobile indices and thei...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 175; číslo 1; s. 76 - 103
Hlavní autoři: Kostyukova, Olga, Tchemisova, Tatiana
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.10.2017
Springer Nature B.V
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In the present paper, we analyze a class of convex semi-infinite programming problems with arbitrary index sets defined by a finite number of nonlinear inequalities. The analysis is carried out by employing the constructive approach, which, in turn, relies on the notions of immobile indices and their immobility orders. Our previous work showcasing this approach includes a number of papers dealing with simpler cases of semi-infinite problems than the ones under consideration here. Key findings of the paper include the formulation and the proof of implicit and explicit optimality conditions under assumptions, which are less restrictive than the constraint qualifications traditionally used. In this perspective, the optimality conditions in question are also compared to those provided in the relevant literature. Finally, the way to formulate the obtained optimality conditions is demonstrated by applying the results of the paper to some special cases of the convex semi-infinite problems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-017-1150-z