Two-Stage Method for Diagonal Recurrent Neural Network Identification of a High-Power Continuous Microwave Heating System

This paper proposes a diagonal recurrent neural network (DRNN) based identification scheme to handle the complexity and nonlinearity of high-power continuous microwave heating system (HPCMHS). The new DRNN design involves a two-stage training process that couples an efficient forward model selection...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural processing letters Ročník 50; číslo 3; s. 2161 - 2182
Hlavní autoři: Liu, Tong, Liang, Shan, Xiong, Qingyu, Wang, Kai
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2019
Springer Nature B.V
Témata:
ISSN:1370-4621, 1573-773X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper proposes a diagonal recurrent neural network (DRNN) based identification scheme to handle the complexity and nonlinearity of high-power continuous microwave heating system (HPCMHS). The new DRNN design involves a two-stage training process that couples an efficient forward model selection technique with gradient-based optimization. In the first stage, an impact recurrent network structure is obtained by a fast recursive algorithm in a stepwise forward procedure. To ensure stability, update rules are further developed using Lyapunov stability criterion to tune parameters of reduced size model at the second stage. The proposed approach is tested with an experimental regression problem and a practical HPCMHS identification, and the results are compared with four typical network models. The results show that the new design demonstrates improved accuracy and model compactness with reduced computational complexity over the existing methods.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1370-4621
1573-773X
DOI:10.1007/s11063-019-09992-w