On mixed-integer optimal control with constrained total variation of the integer control

The combinatorial integral approximation (CIA) decomposition suggests solving mixed-integer optimal control problems by solving one continuous nonlinear control problem and one mixed-integer linear program (MILP). Unrealistic frequent switching can be avoided by adding a constraint on the total vari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications Jg. 78; H. 2; S. 575 - 623
Hauptverfasser: Sager, Sebastian, Zeile, Clemens
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY Springer US 01.03.2021
Springer Nature B.V
Schlagworte:
ISSN:1573-2894, 0926-6003, 1573-2894
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The combinatorial integral approximation (CIA) decomposition suggests solving mixed-integer optimal control problems by solving one continuous nonlinear control problem and one mixed-integer linear program (MILP). Unrealistic frequent switching can be avoided by adding a constraint on the total variation to the MILP. Within this work, we present a fast heuristic way to solve this CIA problem and investigate in which situations optimality of the constructed feasible solution is guaranteed. In the second part of this article, we show tight bounds on the integrality gap between a relaxed continuous control trajectory and an integer feasible one in the case of two controls. Finally, we present numerical experiments to highlight the proposed algorithm’s advantages in terms of run time and solution quality.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1573-2894
0926-6003
1573-2894
DOI:10.1007/s10589-020-00244-5