Bidirectional LSTM-RNN-based hybrid deep learning frameworks for univariate time series classification

Time series classification (TSC) has been around for recent decades as a significant research problem for industry practitioners as well as academic researchers. Due to the rapid increase in temporal data in a wide range of disciplines, an incredible amount of algorithms have been proposed. This pap...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Journal of supercomputing Ročník 77; číslo 7; s. 7021 - 7045
Hlavní autori: Khan, Mehak, Wang, Hongzhi, Riaz, Adnan, Elfatyany, Aya, Karim, Sajida
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.07.2021
Springer Nature B.V
Predmet:
ISSN:0920-8542, 1573-0484
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Time series classification (TSC) has been around for recent decades as a significant research problem for industry practitioners as well as academic researchers. Due to the rapid increase in temporal data in a wide range of disciplines, an incredible amount of algorithms have been proposed. This paper proposes robust approaches based on state-of-the-art techniques, bidirectional long short-term memory (BiLSTM), fully convolutional network (FCN), and attention mechanism. A BiLSTM considers both forward and backward dependencies, and FCN is proven to be good at feature extraction as a TSC baseline. Therefore, we augment BiLSTM and FCN in a hybrid deep learning architecture, BiLSTM-FCN. Moreover, we similarly explore the use of the attention mechanism to check its efficiency on BiLSTM-FCN and propose another model ABiLSTM-FCN. We validate the performance on 85 datasets from the University of California Riverside (UCR) univariate time series archive. The proposed models are evaluated in terms of classification testing error and f1-score and also provide performance comparison with various existing state-of-the-art techniques. The experimental results show that our proposed models perform comprehensively better than the existing state-of-the-art methods and baselines.
AbstractList Time series classification (TSC) has been around for recent decades as a significant research problem for industry practitioners as well as academic researchers. Due to the rapid increase in temporal data in a wide range of disciplines, an incredible amount of algorithms have been proposed. This paper proposes robust approaches based on state-of-the-art techniques, bidirectional long short-term memory (BiLSTM), fully convolutional network (FCN), and attention mechanism. A BiLSTM considers both forward and backward dependencies, and FCN is proven to be good at feature extraction as a TSC baseline. Therefore, we augment BiLSTM and FCN in a hybrid deep learning architecture, BiLSTM-FCN. Moreover, we similarly explore the use of the attention mechanism to check its efficiency on BiLSTM-FCN and propose another model ABiLSTM-FCN. We validate the performance on 85 datasets from the University of California Riverside (UCR) univariate time series archive. The proposed models are evaluated in terms of classification testing error and f1-score and also provide performance comparison with various existing state-of-the-art techniques. The experimental results show that our proposed models perform comprehensively better than the existing state-of-the-art methods and baselines.
Author Elfatyany, Aya
Riaz, Adnan
Khan, Mehak
Karim, Sajida
Wang, Hongzhi
Author_xml – sequence: 1
  givenname: Mehak
  orcidid: 0000-0001-8959-6872
  surname: Khan
  fullname: Khan, Mehak
  email: mehakkhan@hit.edu.cn
  organization: School of Computer Science and Technology, Harbin Institute of Technology
– sequence: 2
  givenname: Hongzhi
  surname: Wang
  fullname: Wang, Hongzhi
  organization: School of Computer Science and Technology, Harbin Institute of Technology
– sequence: 3
  givenname: Adnan
  surname: Riaz
  fullname: Riaz, Adnan
  organization: School of Computer Science and Technology, Dalian University of Technology
– sequence: 4
  givenname: Aya
  surname: Elfatyany
  fullname: Elfatyany, Aya
  organization: School of Computer Science and Technology, Harbin Institute of Technology
– sequence: 5
  givenname: Sajida
  surname: Karim
  fullname: Karim, Sajida
  organization: School of Computer Science and Technology, Harbin Institute of Technology
BookMark eNp9kEtPwzAQhC1UJErhD3CyxNmwtuPEOULFSyog8ThbjrMGQ5oUOwWVX09KkZA4cNrDzjeamV0yarsWCTngcMQBiuPEuRAFAwEMpMqBfW6RMVeFZJDpbETGUA4vrTKxQ3ZTegGATBZyTPxpqENE14eutQ2d3T9cs7ubG1bZhDV9XlUx1LRGXNAGbWxD-0R9tHP86OJror6LdNmGdxuD7ZH2YY40YQyYqGtsSsEHZ9fWe2Tb2ybh_s-dkMfzs4fpJZvdXlxNT2bMSa16lmWVRi-VKqvCOQ6FrVGrAsEBKO2rEqUouYTcurqWpcgRSp3nUvqsEMArOSGHG99F7N6WmHrz0i3j0CwZoYbGGddKDCq9UbnYpRTRGxf675x9tKExHMx6VbNZ1Qyrmu9VzeeAij_oIoa5jav_IbmB0iBunzD-pvqH-gLMGo1B
CitedBy_id crossref_primary_10_1007_s11071_024_10244_3
crossref_primary_10_1109_JIOT_2024_3521248
crossref_primary_10_1016_j_comcom_2022_10_024
crossref_primary_10_3390_app12199723
crossref_primary_10_1016_j_eswa_2022_119073
crossref_primary_10_1016_j_csl_2025_101886
crossref_primary_10_3233_JCM_237124
crossref_primary_10_1007_s41666_025_00209_5
crossref_primary_10_1016_j_ecoinf_2024_102653
crossref_primary_10_1016_j_apenergy_2024_125212
crossref_primary_10_1097_MAT_0000000000002299
crossref_primary_10_3390_ai6040077
crossref_primary_10_1016_j_measurement_2025_118494
crossref_primary_10_1016_j_nexres_2025_100597
crossref_primary_10_1016_j_asoc_2024_111643
crossref_primary_10_1109_ACCESS_2024_3474848
crossref_primary_10_1109_JSEN_2025_3562705
crossref_primary_10_1016_j_atmosenv_2022_119362
crossref_primary_10_3390_diagnostics13111923
crossref_primary_10_3390_ani13030546
crossref_primary_10_1016_j_engappai_2023_106296
crossref_primary_10_1109_ACCESS_2024_3416755
crossref_primary_10_1109_TKDE_2022_3177724
crossref_primary_10_1038_s41598_024_52240_y
crossref_primary_10_1111_coin_12556
crossref_primary_10_1186_s40854_024_00637_z
crossref_primary_10_1109_TAI_2024_3430236
crossref_primary_10_1007_s43538_024_00286_x
crossref_primary_10_1088_1361_6501_ad8d70
crossref_primary_10_1016_j_inffus_2025_103458
crossref_primary_10_1109_TII_2021_3136562
crossref_primary_10_12677_hjbm_2025_153058
crossref_primary_10_32604_cmc_2022_024490
crossref_primary_10_3390_electronics13163204
crossref_primary_10_1109_ACCESS_2025_3577499
crossref_primary_10_1007_s11063_021_10484_z
crossref_primary_10_1016_j_amjoto_2023_104155
crossref_primary_10_1016_j_compag_2023_108379
crossref_primary_10_1016_j_jksuci_2024_102227
crossref_primary_10_3390_app14062254
crossref_primary_10_1016_j_eswa_2025_127202
Cites_doi 10.1007/978-3-319-94340-4_11
10.1109/TPAMI.2020.2986319
10.1016/j.ijleo.2017.12.038
10.1007/s10618-007-0064-z
10.18653/v1/W18-6226
10.1109/ICDMW.2016.0078
10.1007/s10115-004-0154-9
10.1145/2339530.2339576
10.1007/s10618-014-0377-7
10.1007/s10618-014-0361-2
10.1109/ASRU.2013.6707742
10.1109/TKDE.2015.2416723
10.1109/JAS.2019.1911747
10.1016/j.eswa.2016.10.065
10.1007/s10618-019-00619-1
10.1007/s10618-015-0441-y
10.1109/ACCESS.2017.2779939
10.3390/s18114019
10.1016/j.asoc.2019.105765
10.1109/TPAMI.2008.137
10.1109/78.650093
10.1109/TPAMI.2013.72
10.1109/IJCNN.2017.7966039
10.1109/ICPR.2018.8545288
10.1016/j.swevo.2020.100650
10.1016/j.neunet.2005.06.042
10.1162/neco.1997.9.8.1735
10.1109/IWCIA47330.2019.8955030
10.1145/1150402.1150498
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11227-020-03560-z
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 7045
ExternalDocumentID 10_1007_s11227_020_03560_z
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  grantid: U1509216, U1866602, 61602129, and Microsoft Research Asia
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c385t-44b8ef3559b7cc107ade857e0c0058fb9e3291306acdd3926e0986633f47201b3
IEDL.DBID RSV
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604819500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Thu Sep 25 00:50:44 EDT 2025
Tue Nov 18 19:39:50 EST 2025
Sat Nov 29 04:27:39 EST 2025
Fri Feb 21 02:49:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Deep learning
Attention mechanism
Bidirectional long short-term memory recurrent neural network
Time series classification
Convolutional neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c385t-44b8ef3559b7cc107ade857e0c0058fb9e3291306acdd3926e0986633f47201b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8959-6872
PQID 2543741852
PQPubID 2043774
PageCount 25
ParticipantIDs proquest_journals_2543741852
crossref_citationtrail_10_1007_s11227_020_03560_z
crossref_primary_10_1007_s11227_020_03560_z
springer_journals_10_1007_s11227_020_03560_z
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Sch P et al. (2017) Fast and accurate time series classification with WEASEL, in Proceedings of the 2017 ACM on Conference On Information And Knowledge Management. ACM Singapore. 637–646
SchusterMPaliwalKKBidirectional recurrent neural networksIEEE Trans Sign Proc199745112673268110.1109/78.650093
Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv preprint https://arxiv.org/abs/1409.0473
Lin M, Chen Q, Yan S (2013) Network in network. arXiv preprint https://arxiv.org/abs/1312.4400
Hashida S, Tamura K (2019) Multi-channel MHLF: LSTM-FCN using MACD-histogram with multi-channel input for time series classification. in (2019) IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA)
Powers DM (2020) Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv preprint https://arxiv.org/abs/2010.16061
Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint https://arxiv.org/abs/1502.03167
Jiang F, Chen H, Zhang L-J (2018) FCN-biLSTM based VAT invoice recognition and processing. IN INTERNATIONAL CONFERENCE ON EDGE COMPUTING, Springer
SchäferPScalable time series classificationData Min Knowl Disc201630512731298353998110.1007/s10618-015-0441-y
LinesJBagnallATime series classification with ensembles of elastic distance measuresData Min Knowl Disc2015293565592333431510.1007/s10618-014-0361-2
ChenTImproving sentiment analysis via sentence type classification using BiLSTM-CRF and CNNExpert Syst Appl20177222123010.1016/j.eswa.2016.10.065
LinJExperiencing SAX: a novel symbolic representation of time seriesData Min Knowl Disc2007152107144240978310.1007/s10618-007-0064-z
Xu K et al. (2015) Show attend and tell: Neural image caption generation with visual attention. In International Conference On Machine Learning
ChorowskiJKAttention-based models for speech recognitionAdvances in neural information processing systems.201528577585
Abadi M et al. (2016) Tensorflow: a system for large-scale machine learning. In 12th {USENIX} Symposium on operating systems design and implementation ({OSDI} 16)
Nolan JR (1997) Estimating the true performance of classification-based nlp technology. In: From research to commercial applications: Making NLP Work in Practice
EslingPAgonCTime-series data mining ACM Computing Surveys (CSUR)201245112
Lipton ZC, Berkowitz J, Elkan C (2015) A critical review of recurrent neural networks for sequence learning. arXiv preprint https://arxiv.org/abs/1506.00019
GravesASchmidhuberJFramewise phoneme classification with bidirectional LSTM and other neural network architecturesNeur Networks2005185–660261010.1016/j.neunet.2005.06.042
Cui Z, Chen W,Chen Y (2016) Multi-scale convolutional neural networks for time series classification. arXiv preprint https://arxiv.org/abs/1603.06995
BudakÜComputer-aided diagnosis system combining FCN and Bi-LSTM model for efficient breast cancer detection from histopathological imagesApplied Soft Computing20198510576510.1016/j.asoc.2019.105765
KarimFLSTM fully convolutional networks for time series classificationIEEE Access201861662166910.1109/ACCESS.2017.2779939
Chollet F, Keras (2015) Available from: https://github.com/fchollet/keras
Wang Z, Yan W, Oates T (2017) Time series classification from scratch with deep neural networks: A strong baseline. In International Joint Conference On Neural Networks (IJCNN)
ZhaoYApplying deep bidirectional LSTM and mixture density network for basketball trajectory predictionOptik201815826627210.1016/j.ijleo.2017.12.038
Nair V , Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference On Machine Learning (ICML-10)
Ismail Fawaz H et al. (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery
HochreiterSSchmidhuberJLong short-term memoryNeural Comput1997981735178010.1162/neco.1997.9.8.1735
Kingma DP, Ba Adam J (2014) A method for stochastic optimization. arXiv preprint https://arxiv.org/abs/1412.6980
Tang Y et al. (2016) Sequence-to-sequence model with attention for time series classification. In 2016 IEEE 16th International Conference On Data Mining Workshops (ICDMW)
DauHAThe ucr time series archive.201810.1109/JAS.2019.1911747
KarimFMajumdarSDarabiHAdversarial Attacks on Time Series201910.1109/TPAMI.2020.2986319
Chen Y, Keogh E, Hu B, Begum N, Bagnall A, Mueen A, Batista G (2015) The UCR time series classification archive. https://www.cs.ucr.edu/~eamonn/time_series_data
KimYResource-efficient pet dog sound events classification using LSTM-FCN based on time-series dataSensors20181811401910.3390/s18114019
GravesAA novel connectionist system for unconstrained handwriting recognitionIEEE Trans Pattern Anal Mach Intell200931585586810.1109/TPAMI.2008.137
Zhou Q, Wu H (2018) NLP at IEST 2018: BiLSTM-Attention and LSTM-Attention via Soft Voting in Emotion Classification. In Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
Rakthanmanon T et al. (2012) Searching and mining trillions of time series subsequences under dynamic time warping. Proceedings of the 18th ACM SIGKDD International Conference On Knowledge Discovery And Data Mining
SrivastavaNDropout: a simple way to prevent neural networks from overfittingJ Machine Learn Res20141511929195832315921318.68153
Graves A, Jaitly N, Mohamed Ar (2013) Hybrid speech recognition with deep bidirectional LSTM. in 2013 IEEE workshop on automatic speech recognition and understanding
Vinayavekhin P et al. (2018) Focusing on what is relevant: time-series learning and understanding using attention. In 2018 24th International Conference On Pattern Recognition (ICPR)
SchäferPThe BOSS is concerned with time series classification in the presence of noiseData Min Knowl Disc201529615051530340181810.1007/s10618-014-0377-7
OrtegoPEvolutionary LSTM-FCN networks for pattern classification in industrial processesSwarm and Evolutionary Computation20205410065010.1016/j.swevo.2020.100650
BaydoganMGRungerGTuvEA bag-of-features framework to classify time seriesIEEE Trans Pattern Anal Mach Intell201335112796280210.1109/TPAMI.2013.72
Wei L, Keogh E (2006) Semi-supervised time series classification. In proceedings of the 12th ACM SIGKDD International Conference On Knowledge Discovery And Data Mining
KeoghERatanamahatanaCAExact indexing of dynamic time warpingKnowl Inf Syst20057335838610.1007/s10115-004-0154-9
BagnallATime-series classification with COTE: the collective of transformation-based ensemblesIEEE Trans Knowl Data Eng20152792522253510.1109/TKDE.2015.2416723
3560_CR12
3560_CR34
3560_CR33
3560_CR32
3560_CR16
3560_CR38
3560_CR15
3560_CR36
3560_CR35
3560_CR39
P Ortego (3560_CR18) 2020; 54
JK Chorowski (3560_CR37) 2015; 28
P Schäfer (3560_CR10) 2015; 29
HA Dau (3560_CR5) 2018
J Lin (3560_CR8) 2007; 15
F Karim (3560_CR3) 2019
A Graves (3560_CR25) 2005; 18
P Schäfer (3560_CR11) 2016; 30
N Srivastava (3560_CR23) 2014; 15
S Hochreiter (3560_CR28) 1997; 9
M Schuster (3560_CR26) 1997; 45
A Graves (3560_CR30) 2009; 31
A Bagnall (3560_CR14) 2015; 27
Y Kim (3560_CR19) 2018; 18
3560_CR45
J Lines (3560_CR13) 2015; 29
3560_CR22
3560_CR44
3560_CR43
3560_CR20
3560_CR42
3560_CR27
MG Baydogan (3560_CR9) 2013; 35
3560_CR24
3560_CR46
E Keogh (3560_CR6) 2005; 7
Ü Budak (3560_CR21) 2019; 85
T Chen (3560_CR31) 2017; 72
P Esling (3560_CR1) 2012; 45
3560_CR7
Y Zhao (3560_CR29) 2018; 158
3560_CR2
3560_CR41
F Karim (3560_CR17) 2018; 6
3560_CR40
3560_CR4
References_xml – reference: EslingPAgonCTime-series data mining ACM Computing Surveys (CSUR)201245112
– reference: Jiang F, Chen H, Zhang L-J (2018) FCN-biLSTM based VAT invoice recognition and processing. IN INTERNATIONAL CONFERENCE ON EDGE COMPUTING, Springer
– reference: LinJExperiencing SAX: a novel symbolic representation of time seriesData Min Knowl Disc2007152107144240978310.1007/s10618-007-0064-z
– reference: BagnallATime-series classification with COTE: the collective of transformation-based ensemblesIEEE Trans Knowl Data Eng20152792522253510.1109/TKDE.2015.2416723
– reference: Wei L, Keogh E (2006) Semi-supervised time series classification. In proceedings of the 12th ACM SIGKDD International Conference On Knowledge Discovery And Data Mining
– reference: Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. arXiv preprint https://arxiv.org/abs/1409.0473
– reference: SchäferPThe BOSS is concerned with time series classification in the presence of noiseData Min Knowl Disc201529615051530340181810.1007/s10618-014-0377-7
– reference: Sch P et al. (2017) Fast and accurate time series classification with WEASEL, in Proceedings of the 2017 ACM on Conference On Information And Knowledge Management. ACM Singapore. 637–646
– reference: HochreiterSSchmidhuberJLong short-term memoryNeural Comput1997981735178010.1162/neco.1997.9.8.1735
– reference: Powers DM (2020) Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv preprint https://arxiv.org/abs/2010.16061
– reference: Zhou Q, Wu H (2018) NLP at IEST 2018: BiLSTM-Attention and LSTM-Attention via Soft Voting in Emotion Classification. In Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
– reference: GravesAA novel connectionist system for unconstrained handwriting recognitionIEEE Trans Pattern Anal Mach Intell200931585586810.1109/TPAMI.2008.137
– reference: KarimFLSTM fully convolutional networks for time series classificationIEEE Access201861662166910.1109/ACCESS.2017.2779939
– reference: ZhaoYApplying deep bidirectional LSTM and mixture density network for basketball trajectory predictionOptik201815826627210.1016/j.ijleo.2017.12.038
– reference: Abadi M et al. (2016) Tensorflow: a system for large-scale machine learning. In 12th {USENIX} Symposium on operating systems design and implementation ({OSDI} 16)
– reference: SchäferPScalable time series classificationData Min Knowl Disc201630512731298353998110.1007/s10618-015-0441-y
– reference: Lipton ZC, Berkowitz J, Elkan C (2015) A critical review of recurrent neural networks for sequence learning. arXiv preprint https://arxiv.org/abs/1506.00019
– reference: SrivastavaNDropout: a simple way to prevent neural networks from overfittingJ Machine Learn Res20141511929195832315921318.68153
– reference: KarimFMajumdarSDarabiHAdversarial Attacks on Time Series201910.1109/TPAMI.2020.2986319
– reference: KeoghERatanamahatanaCAExact indexing of dynamic time warpingKnowl Inf Syst20057335838610.1007/s10115-004-0154-9
– reference: KimYResource-efficient pet dog sound events classification using LSTM-FCN based on time-series dataSensors20181811401910.3390/s18114019
– reference: Kingma DP, Ba Adam J (2014) A method for stochastic optimization. arXiv preprint https://arxiv.org/abs/1412.6980
– reference: BudakÜComputer-aided diagnosis system combining FCN and Bi-LSTM model for efficient breast cancer detection from histopathological imagesApplied Soft Computing20198510576510.1016/j.asoc.2019.105765
– reference: Hashida S, Tamura K (2019) Multi-channel MHLF: LSTM-FCN using MACD-histogram with multi-channel input for time series classification. in (2019) IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA)
– reference: SchusterMPaliwalKKBidirectional recurrent neural networksIEEE Trans Sign Proc199745112673268110.1109/78.650093
– reference: BaydoganMGRungerGTuvEA bag-of-features framework to classify time seriesIEEE Trans Pattern Anal Mach Intell201335112796280210.1109/TPAMI.2013.72
– reference: Lin M, Chen Q, Yan S (2013) Network in network. arXiv preprint https://arxiv.org/abs/1312.4400
– reference: Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint https://arxiv.org/abs/1502.03167
– reference: LinesJBagnallATime series classification with ensembles of elastic distance measuresData Min Knowl Disc2015293565592333431510.1007/s10618-014-0361-2
– reference: ChorowskiJKAttention-based models for speech recognitionAdvances in neural information processing systems.201528577585
– reference: ChenTImproving sentiment analysis via sentence type classification using BiLSTM-CRF and CNNExpert Syst Appl20177222123010.1016/j.eswa.2016.10.065
– reference: Graves A, Jaitly N, Mohamed Ar (2013) Hybrid speech recognition with deep bidirectional LSTM. in 2013 IEEE workshop on automatic speech recognition and understanding
– reference: Xu K et al. (2015) Show attend and tell: Neural image caption generation with visual attention. In International Conference On Machine Learning
– reference: Chen Y, Keogh E, Hu B, Begum N, Bagnall A, Mueen A, Batista G (2015) The UCR time series classification archive. https://www.cs.ucr.edu/~eamonn/time_series_data/
– reference: OrtegoPEvolutionary LSTM-FCN networks for pattern classification in industrial processesSwarm and Evolutionary Computation20205410065010.1016/j.swevo.2020.100650
– reference: GravesASchmidhuberJFramewise phoneme classification with bidirectional LSTM and other neural network architecturesNeur Networks2005185–660261010.1016/j.neunet.2005.06.042
– reference: Nair V , Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference On Machine Learning (ICML-10)
– reference: DauHAThe ucr time series archive.201810.1109/JAS.2019.1911747
– reference: Cui Z, Chen W,Chen Y (2016) Multi-scale convolutional neural networks for time series classification. arXiv preprint https://arxiv.org/abs/1603.06995
– reference: Chollet F, Keras (2015) Available from: https://github.com/fchollet/keras
– reference: Nolan JR (1997) Estimating the true performance of classification-based nlp technology. In: From research to commercial applications: Making NLP Work in Practice
– reference: Vinayavekhin P et al. (2018) Focusing on what is relevant: time-series learning and understanding using attention. In 2018 24th International Conference On Pattern Recognition (ICPR)
– reference: Ismail Fawaz H et al. (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery
– reference: Rakthanmanon T et al. (2012) Searching and mining trillions of time series subsequences under dynamic time warping. Proceedings of the 18th ACM SIGKDD International Conference On Knowledge Discovery And Data Mining
– reference: Wang Z, Yan W, Oates T (2017) Time series classification from scratch with deep neural networks: A strong baseline. In International Joint Conference On Neural Networks (IJCNN)
– reference: Tang Y et al. (2016) Sequence-to-sequence model with attention for time series classification. In 2016 IEEE 16th International Conference On Data Mining Workshops (ICDMW)
– ident: 3560_CR22
  doi: 10.1007/978-3-319-94340-4_11
– ident: 3560_CR42
– year: 2019
  ident: 3560_CR3
  publication-title: Adversarial Attacks on Time Series
  doi: 10.1109/TPAMI.2020.2986319
– ident: 3560_CR38
– volume: 158
  start-page: 266
  year: 2018
  ident: 3560_CR29
  publication-title: Optik
  doi: 10.1016/j.ijleo.2017.12.038
– ident: 3560_CR46
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 3560_CR23
  publication-title: J Machine Learn Res
– volume: 15
  start-page: 107
  issue: 2
  year: 2007
  ident: 3560_CR8
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-007-0064-z
– ident: 3560_CR39
  doi: 10.18653/v1/W18-6226
– ident: 3560_CR40
  doi: 10.1109/ICDMW.2016.0078
– ident: 3560_CR44
– volume: 7
  start-page: 358
  issue: 3
  year: 2005
  ident: 3560_CR6
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-004-0154-9
– ident: 3560_CR7
  doi: 10.1145/2339530.2339576
– volume: 29
  start-page: 1505
  issue: 6
  year: 2015
  ident: 3560_CR10
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-014-0377-7
– volume: 29
  start-page: 565
  issue: 3
  year: 2015
  ident: 3560_CR13
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-014-0361-2
– ident: 3560_CR32
  doi: 10.1109/ASRU.2013.6707742
– ident: 3560_CR33
– ident: 3560_CR35
– volume: 27
  start-page: 2522
  issue: 9
  year: 2015
  ident: 3560_CR14
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2015.2416723
– volume: 28
  start-page: 577
  year: 2015
  ident: 3560_CR37
  publication-title: Advances in neural information processing systems.
– volume: 45
  start-page: 12
  issue: 1
  year: 2012
  ident: 3560_CR1
  publication-title: Time-series data mining ACM Computing Surveys (CSUR)
– year: 2018
  ident: 3560_CR5
  publication-title: The ucr time series archive.
  doi: 10.1109/JAS.2019.1911747
– ident: 3560_CR12
– volume: 72
  start-page: 221
  year: 2017
  ident: 3560_CR31
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.10.065
– ident: 3560_CR16
– ident: 3560_CR24
  doi: 10.1007/s10618-019-00619-1
– volume: 30
  start-page: 1273
  issue: 5
  year: 2016
  ident: 3560_CR11
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-015-0441-y
– ident: 3560_CR43
– volume: 6
  start-page: 1662
  year: 2018
  ident: 3560_CR17
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2779939
– volume: 18
  start-page: 4019
  issue: 11
  year: 2018
  ident: 3560_CR19
  publication-title: Sensors
  doi: 10.3390/s18114019
– ident: 3560_CR45
– volume: 85
  start-page: 105765
  year: 2019
  ident: 3560_CR21
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.105765
– volume: 31
  start-page: 855
  issue: 5
  year: 2009
  ident: 3560_CR30
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.137
– volume: 45
  start-page: 2673
  issue: 11
  year: 1997
  ident: 3560_CR26
  publication-title: IEEE Trans Sign Proc
  doi: 10.1109/78.650093
– volume: 35
  start-page: 2796
  issue: 11
  year: 2013
  ident: 3560_CR9
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.72
– ident: 3560_CR15
  doi: 10.1109/IJCNN.2017.7966039
– ident: 3560_CR27
– ident: 3560_CR41
  doi: 10.1109/ICPR.2018.8545288
– ident: 3560_CR34
– volume: 54
  start-page: 100650
  year: 2020
  ident: 3560_CR18
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2020.100650
– volume: 18
  start-page: 602
  issue: 5–6
  year: 2005
  ident: 3560_CR25
  publication-title: Neur Networks
  doi: 10.1016/j.neunet.2005.06.042
– ident: 3560_CR36
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 3560_CR28
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– ident: 3560_CR4
– ident: 3560_CR20
  doi: 10.1109/IWCIA47330.2019.8955030
– ident: 3560_CR2
  doi: 10.1145/1150402.1150498
SSID ssj0004373
Score 2.5249546
Snippet Time series classification (TSC) has been around for recent decades as a significant research problem for industry practitioners as well as academic...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7021
SubjectTerms Algorithms
Art techniques
Classification
Compilers
Computer Science
Deep learning
Feature extraction
Interpreters
Machine learning
Processor Architectures
Programming Languages
Time series
Title Bidirectional LSTM-RNN-based hybrid deep learning frameworks for univariate time series classification
URI https://link.springer.com/article/10.1007/s11227-020-03560-z
https://www.proquest.com/docview/2543741852
Volume 77
WOSCitedRecordID wos000604819500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7o9ODF-ROnU3LwpoE1bZf2qOLwoEW2KbuVJE10IHWs28D99SZpalFU0HPTUF5e8n2vee99AKeZdlpPMQ8LRhgOpGCYyU4H04xa7W3KFLdiEzRJotEovndFYUWV7V5dSdqTui528wih2IQ7HV_jNF6uwpqGu8gINvQHj3U1pF_eK8d6ZBQGxJXKfD_HZziqOeaXa1GLNr3m_75zCzYdu0QXpTtsw4rMd6BZKTcgt5F3QV2OSyyzPwLR7WB4h_tJgg2mZej5zZRxoUzKCXKqEk9IVVlcBdI8F83z8UKH2ZqpIiNPj4wnywIJQ8ZN9pFd8D146F0Pr26wU1zAwo_CGQ4CHkmlKUjMqRA6MmSZjEIqO8LIDyoeS5_EGvW6TGSZZlZdqe2vOYuvAqqZBPf3oZG_5vIAUEi9OBKK6PiKBSHjXPi-EfkIuDQ9_bwWeJXhU-HakRtVjJe0bqRsDJlqQ6bWkOmyBWcf70zKZhy_jm5X65m6jVmkpvbfNuwhLTiv1q9-_PNsh38bfgQbxGS_2MTeNjRm07k8hnWxmI2L6Yl12HcATeVB
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50Cvri_InTqXnwTQNtky7to4pj4lZkm7K3kqapDqQOuw3cX2-SthZFBX1uGsrlku-75u4-gNNYOa2dcBsL7nBMpeCYS8vCLGZGe5vxJDJiEywIvNHIvyuKwrIy2728kjQndVXsZjsOwzrcsYjCabxYhhWqEEt3zO8PHqpqSJLfK_tqpOdSpyiV-X6Oz3BUccwv16IGbdr1_33nJmwU7BJd5O6wBUsy3YZ6qdyAio28A8nlOMcy8yMQdQfDHu4HAdaYFqOnN13GhWIpJ6hQlXhESZnFlSHFc9EsHc9VmK2YKtLy9Eh7ssyQ0GRcZx-ZBd-F-_b18KqDC8UFLIjnTjGlkScTRUH8iAmhIkMeS89l0hJafjCJfEkcX6Fei4s4VsyqJS3fU5yFJJQpJhGRPailL6ncB-Qy2_dE4qj4ilOXR5EgRIt80Ejqnn52A-zS8KEo2pFrVYznsGqkrA0ZKkOGxpDhogFnH-9M8mYcv45ulusZFhszC3Xtv2nY4zTgvFy_6vHPsx38bfgJrHWGvW7YvQluD2Hd0ZkwJsm3CbXp60wewaqYT8fZ67Fx3nfHougl
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FfHi-sT1mYM3DfZp2qOvRVGL-MJbSdNEF6Qu27rg_nozaWtVVBDPnYYymTDfNDPfB7CV6qC1Fbep4A6nnhSccmlZlKXMaG8zrhIjNsGiKLi_Dy8_TPGbbvf6SrKcaUCWpqzY7adqtxl8sx2HUSx9LFfnbDoahwkPG-mxXr--ayYj3fKOOdSWge851djM92t8Tk0N3vxyRWoyT7f9_2-ehZkKdZL9MkzmYExm89CuFR1IdcAXQB30yhxnfhCS8-ubC3oVRRRzXUoeX3G8i6RS9kmlNvFAVN3dlRONf8lL1hvq8lsjWIKy9QQjXOZEIEjHriQTCItw2z2-OTyhlRIDFW7gF9TzkkAqDU3ChAmhK0aeysBn0hIoS6iSULpOqLPhHhdpqhHXnrTCQGMZV3lMI4zEXYJW9pzJZSA-s8NAKEfXXdzzeZII10XxDy-RyPVnd8CuNyEWFU05qmU8xQ3BMjoy1o6MjSPjUQe239_plyQdv1qv1XsbVwc2j5ETwBD5OB3Yqfeyefzzait_M9-Eqcujbnx-Gp2twrSDDTKm93cNWsXgRa7DpBgWvXywYeL4DQbP8Qk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bidirectional+LSTM-RNN-based+hybrid+deep+learning+frameworks+for+univariate+time+series+classification&rft.jtitle=The+Journal+of+supercomputing&rft.au=Khan%2C+Mehak&rft.au=Wang%2C+Hongzhi&rft.au=Riaz%2C+Adnan&rft.au=Elfatyany%2C+Aya&rft.date=2021-07-01&rft.pub=Springer+US&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=77&rft.issue=7&rft.spage=7021&rft.epage=7045&rft_id=info:doi/10.1007%2Fs11227-020-03560-z&rft.externalDocID=10_1007_s11227_020_03560_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon