Bidirectional LSTM-RNN-based hybrid deep learning frameworks for univariate time series classification
Time series classification (TSC) has been around for recent decades as a significant research problem for industry practitioners as well as academic researchers. Due to the rapid increase in temporal data in a wide range of disciplines, an incredible amount of algorithms have been proposed. This pap...
Uložené v:
| Vydané v: | The Journal of supercomputing Ročník 77; číslo 7; s. 7021 - 7045 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.07.2021
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0920-8542, 1573-0484 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Time series classification (TSC) has been around for recent decades as a significant research problem for industry practitioners as well as academic researchers. Due to the rapid increase in temporal data in a wide range of disciplines, an incredible amount of algorithms have been proposed. This paper proposes robust approaches based on state-of-the-art techniques, bidirectional long short-term memory (BiLSTM), fully convolutional network (FCN), and attention mechanism. A BiLSTM considers both forward and backward dependencies, and FCN is proven to be good at feature extraction as a TSC baseline. Therefore, we augment BiLSTM and FCN in a hybrid deep learning architecture, BiLSTM-FCN. Moreover, we similarly explore the use of the attention mechanism to check its efficiency on BiLSTM-FCN and propose another model ABiLSTM-FCN. We validate the performance on 85 datasets from the University of California Riverside (UCR) univariate time series archive. The proposed models are evaluated in terms of classification testing error and f1-score and also provide performance comparison with various existing state-of-the-art techniques. The experimental results show that our proposed models perform comprehensively better than the existing state-of-the-art methods and baselines. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0920-8542 1573-0484 |
| DOI: | 10.1007/s11227-020-03560-z |