Genetic algorithms: theory, genetic operators, solutions, and applications

A genetic algorithm (GA) is an evolutionary algorithm inspired by the natural selection and biological processes of reproduction of the fittest individual. GA is one of the most popular optimization algorithms that is currently employed in a wide range of real applications. Initially, the GA fills t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolutionary intelligence Jg. 17; H. 3; S. 1245 - 1256
Hauptverfasser: Alhijawi, Bushra, Awajan, Arafat
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2024
Springer Nature B.V
Schlagworte:
ISSN:1864-5909, 1864-5917
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A genetic algorithm (GA) is an evolutionary algorithm inspired by the natural selection and biological processes of reproduction of the fittest individual. GA is one of the most popular optimization algorithms that is currently employed in a wide range of real applications. Initially, the GA fills the population with random candidate solutions and develops the optimal solution from one generation to the next. The GA applies a set of genetic operators during the search process: selection, crossover, and mutation. This article aims to review and summarize the recent contributions to the GA research field. In addition, the definitions of the GA essential concepts are reviewed. Furthermore, the article surveys the real-life applications and roles of GA. Finally, future directions are provided to develop the field.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1864-5909
1864-5917
DOI:10.1007/s12065-023-00822-6