Convergence of linear and nonlinear Neumann–Neumann method for the Cahn–Hilliard equation

In this paper, we propose and analyze a non-overlapping substructuring type algorithm for the Cahn–Hilliard equation. Being a nonlinear equation, it is of great importance to develop a robust numerical method for investigating the solution behaviour of the CH equation. We present the formulation of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Japan journal of industrial and applied mathematics Ročník 41; číslo 1; s. 211 - 232
Hlavní autor: Garai, Gobinda
Médium: Journal Article
Jazyk:angličtina
Vydáno: Tokyo Springer Japan 01.01.2024
Springer Nature B.V
Témata:
ISSN:0916-7005, 1868-937X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we propose and analyze a non-overlapping substructuring type algorithm for the Cahn–Hilliard equation. Being a nonlinear equation, it is of great importance to develop a robust numerical method for investigating the solution behaviour of the CH equation. We present the formulation of the Neumann–Neumann method applied to the CH equation and study its convergence behaviour in one and two spatial dimension for two subdomains and also extend the method for logarithmic nonlinearity. We also present the nonlinear NN method for the CH equation. We illustrate the theoretical results by providing numerical examples.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0916-7005
1868-937X
DOI:10.1007/s13160-023-00600-y