Mfuzz: a software package for soft clustering of microarray data

For the analysis of microarray data, clustering techniques are frequently used. Most of such methods are based on hard clustering of data wherein one gene (or sample) is assigned to exactly one cluster. Hard clustering, however, suffers from several drawbacks such as sensitivity to noise and informa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformation Jg. 2; H. 1; S. 5
Hauptverfasser: Kumar, Lokesh, E Futschik, Matthias
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Singapore 20.05.2007
Schlagworte:
ISSN:0973-2063, 0973-2063
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the analysis of microarray data, clustering techniques are frequently used. Most of such methods are based on hard clustering of data wherein one gene (or sample) is assigned to exactly one cluster. Hard clustering, however, suffers from several drawbacks such as sensitivity to noise and information loss. In contrast, soft clustering methods can assign a gene to several clusters. They can overcome shortcomings of conventional hard clustering techniques and offer further advantages. Thus, we constructed an R package termed Mfuzz implementing soft clustering tools for microarray data analysis. The additional package Mfuzzgui provides a convenient TclTk based graphical user interface. The R package Mfuzz and Mfuzzgui are available at http://itb1.biologie.hu-berlin.de/~futschik/software/R/Mfuzz/index.html. Their distribution is subject to GPL version 2 license.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0973-2063
0973-2063
DOI:10.6026/97320630002005