Mfuzz: a software package for soft clustering of microarray data

For the analysis of microarray data, clustering techniques are frequently used. Most of such methods are based on hard clustering of data wherein one gene (or sample) is assigned to exactly one cluster. Hard clustering, however, suffers from several drawbacks such as sensitivity to noise and informa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bioinformation Ročník 2; číslo 1; s. 5
Hlavní autoři: Kumar, Lokesh, E Futschik, Matthias
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore 20.05.2007
Témata:
ISSN:0973-2063, 0973-2063
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:For the analysis of microarray data, clustering techniques are frequently used. Most of such methods are based on hard clustering of data wherein one gene (or sample) is assigned to exactly one cluster. Hard clustering, however, suffers from several drawbacks such as sensitivity to noise and information loss. In contrast, soft clustering methods can assign a gene to several clusters. They can overcome shortcomings of conventional hard clustering techniques and offer further advantages. Thus, we constructed an R package termed Mfuzz implementing soft clustering tools for microarray data analysis. The additional package Mfuzzgui provides a convenient TclTk based graphical user interface. The R package Mfuzz and Mfuzzgui are available at http://itb1.biologie.hu-berlin.de/~futschik/software/R/Mfuzz/index.html. Their distribution is subject to GPL version 2 license.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0973-2063
0973-2063
DOI:10.6026/97320630002005