Quantum approximate optimization of non-planar graph problems on a planar superconducting processor
Faster algorithms for combinatorial optimization could prove transformative for diverse areas such as logistics, finance and machine learning. Accordingly, the possibility of quantum enhanced optimization has driven much interest in quantum technologies. Here we demonstrate the application of the Go...
Saved in:
| Published in: | Nature physics Vol. 17; no. 3; pp. 332 - 336 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group
01.03.2021
|
| Subjects: | |
| ISSN: | 1745-2473, 1745-2481 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Faster algorithms for combinatorial optimization could prove transformative for diverse areas such as logistics, finance and machine learning. Accordingly, the possibility of quantum enhanced optimization has driven much interest in quantum technologies. Here we demonstrate the application of the Google Sycamore superconducting qubit quantum processor to combinatorial optimization problems with the quantum approximate optimization algorithm (QAOA). Like past QAOA experiments, we study performance for problems defined on the planar connectivity graph native to our hardware; however, we also apply the QAOA to the Sherrington–Kirkpatrick model and MaxCut, non-native problems that require extensive compilation to implement. For hardware-native problems, which are classically efficient to solve on average, we obtain an approximation ratio that is independent of problem size and observe that performance increases with circuit depth. For problems requiring compilation, performance decreases with problem size. Circuits involving several thousand gates still present an advantage over random guessing but not over some efficient classical algorithms. Our results suggest that it will be challenging to scale near-term implementations of the QAOA for problems on non-native graphs. As these graphs are closer to real-world instances, we suggest more emphasis should be placed on such problems when using the QAOA to benchmark quantum processors.It is hoped that quantum computers may be faster than classical ones at solving optimization problems. Here the authors implement a quantum optimization algorithm over 23 qubits but find more limited performance when an optimization problem structure does not match the underlying hardware. |
|---|---|
| AbstractList | Faster algorithms for combinatorial optimization could prove transformative for diverse areas such as logistics, finance and machine learning. Accordingly, the possibility of quantum enhanced optimization has driven much interest in quantum technologies. Here we demonstrate the application of the Google Sycamore superconducting qubit quantum processor to combinatorial optimization problems with the quantum approximate optimization algorithm (QAOA). Like past QAOA experiments, we study performance for problems defined on the planar connectivity graph native to our hardware; however, we also apply the QAOA to the Sherrington–Kirkpatrick model and MaxCut, non-native problems that require extensive compilation to implement. For hardware-native problems, which are classically efficient to solve on average, we obtain an approximation ratio that is independent of problem size and observe that performance increases with circuit depth. For problems requiring compilation, performance decreases with problem size. Circuits involving several thousand gates still present an advantage over random guessing but not over some efficient classical algorithms. Our results suggest that it will be challenging to scale near-term implementations of the QAOA for problems on non-native graphs. As these graphs are closer to real-world instances, we suggest more emphasis should be placed on such problems when using the QAOA to benchmark quantum processors.It is hoped that quantum computers may be faster than classical ones at solving optimization problems. Here the authors implement a quantum optimization algorithm over 23 qubits but find more limited performance when an optimization problem structure does not match the underlying hardware. |
| Author | Kostritsa Fedor Ryan, Babbush Quintana, Chris Gidney, Craig O’Brien Thomas E Yeh Ping Jamie, Yao Z Buell, David A Ho, Alan Brooks, Foxen Mohseni Masoud Eppens, Daniel Graff, Rob Putterman Harald Collins, Roberto Lindmark, Mike Niu Murphy Yuezhen Sung, Kevin J Martinis, John M McEwen, Matt Xiao, Mi Zalcman, Adam Kelly, Julian Sank, Daniel White, Theodore Dunsworth, Andrew Hong, Sabrina Harrigan, Matthew P Neven Hartmut Zhou, Leo Ostby, Eric Farhi, Edward Arya Kunal Kafri Dvir O’Gorman Bryan Landhuis, David Leib, Martin Smelyanskiy Vadim Laptev Pavel Broughton, Michael Streif, Michael Fowler, Austin Barends Rami Habegger, Steve Huang, Trent Boixo Sergio Giustina Marissa Bacon, Dave McClean, Jarrod R Martin, Orion Arute Frank Atalaya Juan Burkett, Brian Mutus Josh Bardin, Joseph C Lucero, Erik Kim, Seon Strain, Doug Chiaro, Ben Ioffe, L B Isakov, Sergei V Korotkov, Alexander N Mruczkiewicz Wojciech Roushan Pedram Courtney, William Petukhov, Andre Rubin, Nicholas C Bushnell, Nicholas Kechedzhi Kostyantyn Chen, Yu Neukart Florian Naaman Ofer Demura, Sean Klimov, |
| Author_xml | – sequence: 1 givenname: Matthew surname: Harrigan middlename: P fullname: Harrigan, Matthew P – sequence: 2 givenname: Kevin surname: Sung middlename: J fullname: Sung, Kevin J – sequence: 3 givenname: Matthew surname: Neeley fullname: Neeley, Matthew – sequence: 4 givenname: Kevin surname: Satzinger middlename: J fullname: Satzinger, Kevin J – sequence: 5 fullname: Arute Frank – sequence: 6 fullname: Arya Kunal – sequence: 7 fullname: Atalaya Juan – sequence: 8 givenname: Joseph surname: Bardin middlename: C fullname: Bardin, Joseph C – sequence: 9 fullname: Barends Rami – sequence: 10 fullname: Boixo Sergio – sequence: 11 givenname: Michael surname: Broughton fullname: Broughton, Michael – sequence: 12 givenname: Bob surname: Buckley middlename: B fullname: Buckley, Bob B – sequence: 13 givenname: David surname: Buell middlename: A fullname: Buell, David A – sequence: 14 givenname: Brian surname: Burkett fullname: Burkett, Brian – sequence: 15 givenname: Nicholas surname: Bushnell fullname: Bushnell, Nicholas – sequence: 16 givenname: Yu surname: Chen fullname: Chen, Yu – sequence: 17 givenname: Zijun surname: Chen fullname: Chen, Zijun – sequence: 18 givenname: Ben surname: Chiaro fullname: Chiaro, Ben – sequence: 19 givenname: Roberto surname: Collins fullname: Collins, Roberto – sequence: 20 givenname: William surname: Courtney fullname: Courtney, William – sequence: 21 givenname: Sean surname: Demura fullname: Demura, Sean – sequence: 22 givenname: Andrew surname: Dunsworth fullname: Dunsworth, Andrew – sequence: 23 givenname: Daniel surname: Eppens fullname: Eppens, Daniel – sequence: 24 givenname: Austin surname: Fowler fullname: Fowler, Austin – sequence: 25 givenname: Foxen surname: Brooks fullname: Brooks, Foxen – sequence: 26 givenname: Craig surname: Gidney fullname: Gidney, Craig – sequence: 27 fullname: Giustina Marissa – sequence: 28 givenname: Rob surname: Graff fullname: Graff, Rob – sequence: 29 givenname: Steve surname: Habegger fullname: Habegger, Steve – sequence: 30 givenname: Alan surname: Ho fullname: Ho, Alan – sequence: 31 givenname: Sabrina surname: Hong fullname: Hong, Sabrina – sequence: 32 givenname: Trent surname: Huang fullname: Huang, Trent – sequence: 33 givenname: L surname: Ioffe middlename: B fullname: Ioffe, L B – sequence: 34 givenname: Sergei surname: Isakov middlename: V fullname: Isakov, Sergei V – sequence: 35 givenname: Jeffrey surname: Evan fullname: Evan, Jeffrey – sequence: 36 givenname: Jiang surname: Zhang fullname: Zhang, Jiang – sequence: 37 givenname: Cody surname: Jones fullname: Jones, Cody – sequence: 38 fullname: Kafri Dvir – sequence: 39 fullname: Kechedzhi Kostyantyn – sequence: 40 givenname: Julian surname: Kelly fullname: Kelly, Julian – sequence: 41 givenname: Seon surname: Kim fullname: Kim, Seon – sequence: 42 givenname: Paul surname: Klimov middlename: V fullname: Klimov, Paul V – sequence: 43 givenname: Alexander surname: Korotkov middlename: N fullname: Korotkov, Alexander N – sequence: 44 fullname: Kostritsa Fedor – sequence: 45 givenname: David surname: Landhuis fullname: Landhuis, David – sequence: 46 fullname: Laptev Pavel – sequence: 47 givenname: Mike surname: Lindmark fullname: Lindmark, Mike – sequence: 48 givenname: Martin surname: Leib fullname: Leib, Martin – sequence: 49 givenname: Orion surname: Martin fullname: Martin, Orion – sequence: 50 givenname: John surname: Martinis middlename: M fullname: Martinis, John M – sequence: 51 givenname: Jarrod surname: McClean middlename: R fullname: McClean, Jarrod R – sequence: 52 givenname: Matt surname: McEwen fullname: McEwen, Matt – sequence: 53 fullname: Megrant Anthony – sequence: 54 givenname: Mi surname: Xiao fullname: Xiao, Mi – sequence: 55 fullname: Mohseni Masoud – sequence: 56 fullname: Mruczkiewicz Wojciech – sequence: 57 fullname: Mutus Josh – sequence: 58 fullname: Naaman Ofer – sequence: 59 givenname: Charles surname: Neill fullname: Neill, Charles – sequence: 60 fullname: Neukart Florian – sequence: 61 fullname: Niu Murphy Yuezhen – sequence: 62 fullname: O’Brien Thomas E – sequence: 63 fullname: O’Gorman Bryan – sequence: 64 givenname: Eric surname: Ostby fullname: Ostby, Eric – sequence: 65 givenname: Andre surname: Petukhov fullname: Petukhov, Andre – sequence: 66 fullname: Putterman Harald – sequence: 67 givenname: Chris surname: Quintana fullname: Quintana, Chris – sequence: 68 fullname: Roushan Pedram – sequence: 69 givenname: Nicholas surname: Rubin middlename: C fullname: Rubin, Nicholas C – sequence: 70 givenname: Daniel surname: Sank fullname: Sank, Daniel – sequence: 71 fullname: Skolik Andrea – sequence: 72 fullname: Smelyanskiy Vadim – sequence: 73 givenname: Doug surname: Strain fullname: Strain, Doug – sequence: 74 givenname: Michael surname: Streif fullname: Streif, Michael – sequence: 75 givenname: Marco surname: Szalay fullname: Szalay, Marco – sequence: 76 fullname: Vainsencher Amit – sequence: 77 givenname: Theodore surname: White fullname: White, Theodore – sequence: 78 givenname: Yao surname: Jamie middlename: Z fullname: Jamie, Yao Z – sequence: 79 fullname: Yeh Ping – sequence: 80 givenname: Adam surname: Zalcman fullname: Zalcman, Adam – sequence: 81 givenname: Leo surname: Zhou fullname: Zhou, Leo – sequence: 82 fullname: Neven Hartmut – sequence: 83 givenname: Dave surname: Bacon fullname: Bacon, Dave – sequence: 84 givenname: Erik surname: Lucero fullname: Lucero, Erik – sequence: 85 givenname: Edward surname: Farhi fullname: Farhi, Edward – sequence: 86 givenname: Babbush surname: Ryan fullname: Ryan, Babbush |
| BookMark | eNo9j09LxDAUxIOs4O7qF_AU8BxNmqRpjrL4DxZE0PPymiZrlzapSQrqpzfi4ukNzDC_Nyu08MFbhC4ZvWaUNzdJMFkrQitKKGNUkq8TtGRKSFKJhi3-teJnaJXSgVJR1YwvkXmZwed5xDBNMXz2I2SLw5T7sf-G3AePg8MFRqYBPES8jzC94xJtBzsmXHzARyvNk40m-G42uff735CxKYV4jk4dDMleHO8avd3fvW4eyfb54WlzuyWGNzIT1rnyk7PQWs64UJ2mnXOila5ylmupdV3XrVRWAQUljeBcN652oBtpusbyNbr66y3kj9mmvDuEOfqC3FVCa0FZmc1_AB0iXIA |
| CitedBy_id | crossref_primary_10_1103_PhysRevApplied_23_014045 crossref_primary_10_1002_qute_202300113 crossref_primary_10_1007_s11433_021_1844_7 crossref_primary_10_1103_PhysRevA_103_042612 crossref_primary_10_1103_PhysRevResearch_6_013071 crossref_primary_10_1103_RevModPhys_94_015004 crossref_primary_10_1109_ACCESS_2023_3324253 crossref_primary_10_1140_epjqt_s40507_023_00166_1 crossref_primary_10_3390_e24111685 crossref_primary_10_1007_s11128_025_04925_0 crossref_primary_10_1038_s41534_025_01082_1 crossref_primary_10_1016_j_mattod_2023_02_014 crossref_primary_10_1007_s11467_022_1249_z crossref_primary_10_1088_1367_2630_acd571 crossref_primary_10_1088_2058_9565_acf59c crossref_primary_10_3390_e25081238 crossref_primary_10_1088_1612_202X_accf79 crossref_primary_10_1103_PhysRevApplied_21_067001 crossref_primary_10_1103_PhysRevA_111_022618 crossref_primary_10_1088_1674_1056_ac9b32 crossref_primary_10_1016_j_rser_2022_112493 crossref_primary_10_1103_PhysRevA_105_012419 crossref_primary_10_1088_2058_9565_ac7ba3 crossref_primary_10_1103_PRXQuantum_3_030304 crossref_primary_10_1038_s41567_020_01126_7 crossref_primary_10_1038_s41598_022_14767_w crossref_primary_10_1103_PhysRevResearch_5_023147 crossref_primary_10_1145_3711935 crossref_primary_10_1109_TQE_2021_3090207 crossref_primary_10_1007_s42484_022_00069_x crossref_primary_10_1002_andp_202200531 crossref_primary_10_1103_PhysRevX_13_041057 crossref_primary_10_1103_24gg_7p8z crossref_primary_10_1287_ijoc_2024_0551 crossref_primary_10_1007_s11433_022_2057_y crossref_primary_10_1103_PhysRevX_13_041052 crossref_primary_10_1007_s11433_022_2044_5 crossref_primary_10_1103_PhysRevResearch_4_033012 crossref_primary_10_1088_1674_1056_acce9a crossref_primary_10_1103_PhysRevResearch_5_023141 crossref_primary_10_20935_AcadQuant7900 crossref_primary_10_1038_s41598_023_31980_3 crossref_primary_10_1103_PhysRevResearch_7_013129 crossref_primary_10_1007_s11128_024_04438_2 crossref_primary_10_1109_TQE_2021_3063635 crossref_primary_10_1038_s41534_024_00854_5 crossref_primary_10_1103_PhysRevResearch_5_L012021 crossref_primary_10_1103_PhysRevX_11_031057 crossref_primary_10_1103_PhysRevX_12_041022 crossref_primary_10_22331_q_2025_08_29_1841 crossref_primary_10_3390_computers14040137 crossref_primary_10_3390_e26070586 crossref_primary_10_1038_s41534_021_00478_z crossref_primary_10_1088_2058_9565_ad9cba crossref_primary_10_1016_j_scib_2023_08_040 crossref_primary_10_1088_2058_9565_ac6824 crossref_primary_10_1038_s41467_021_27045_6 crossref_primary_10_1103_PhysRevResearch_4_033140 crossref_primary_10_1145_3517340 crossref_primary_10_1103_PhysRevResearch_4_033142 crossref_primary_10_1109_JSSC_2021_3115988 crossref_primary_10_1103_PhysRevResearch_4_033028 crossref_primary_10_1103_PhysRevResearch_4_033149 crossref_primary_10_1103_PhysRevA_106_022606 crossref_primary_10_1103_PhysRevResearch_4_033029 crossref_primary_10_1016_j_physa_2024_129951 crossref_primary_10_1103_PhysRevResearch_3_043088 crossref_primary_10_1140_epjqt_s40507_024_00262_w crossref_primary_10_1103_PhysRevX_11_041032 crossref_primary_10_1140_epjqt_s40507_022_00123_4 crossref_primary_10_1063_5_0261878 crossref_primary_10_1016_j_ejor_2023_03_013 crossref_primary_10_1103_PhysRevApplied_19_024027 crossref_primary_10_1103_PhysRevA_111_012619 crossref_primary_10_1103_nt3w_j4mj crossref_primary_10_1103_PhysRevApplied_18_064046 crossref_primary_10_1016_j_jcp_2024_112756 crossref_primary_10_1103_PRXQuantum_4_020304 crossref_primary_10_1002_cbic_202300120 crossref_primary_10_1088_2058_9565_acb1d0 crossref_primary_10_1103_PRXQuantum_6_020306 crossref_primary_10_1088_2058_9565_ac3e54 crossref_primary_10_1103_PhysRevResearch_6_023129 crossref_primary_10_1145_3510857 crossref_primary_10_22331_q_2025_05_05_1730 crossref_primary_10_1038_s41467_024_46623_y crossref_primary_10_1103_PhysRevApplied_20_044041 crossref_primary_10_1103_PhysRevA_106_062414 crossref_primary_10_1145_3620668 crossref_primary_10_1007_s11128_025_04743_4 crossref_primary_10_1109_TQE_2022_3203153 crossref_primary_10_22331_q_2025_05_28_1757 crossref_primary_10_3390_math10152601 crossref_primary_10_1016_j_physrep_2024_03_002 crossref_primary_10_1063_5_0060246 crossref_primary_10_1145_3584706 crossref_primary_10_1103_PhysRevA_106_022423 crossref_primary_10_1038_s41534_022_00592_6 crossref_primary_10_1002_aic_17651 crossref_primary_10_1073_pnas_2212323120 crossref_primary_10_1109_TWC_2024_3523135 crossref_primary_10_1134_S0021364023603056 crossref_primary_10_1038_s41534_023_00718_4 crossref_primary_10_1038_s41534_024_00849_2 crossref_primary_10_1126_science_abq3754 crossref_primary_10_1103_PhysRevLett_134_090601 crossref_primary_10_3390_data7030028 crossref_primary_10_1109_ACCESS_2025_3528443 crossref_primary_10_1016_j_gmod_2024_101237 crossref_primary_10_1103_PhysRevApplied_22_044074 crossref_primary_10_1103_PRXQuantum_4_040335 crossref_primary_10_1002_qute_202300055 crossref_primary_10_1109_ACCESS_2024_3432330 crossref_primary_10_1134_S0021364023604256 crossref_primary_10_1038_s41534_021_00452_9 crossref_primary_10_1088_1751_8121_ad00f0 crossref_primary_10_1103_PhysRevResearch_6_043297 crossref_primary_10_1109_TWC_2024_3383101 crossref_primary_10_1088_1674_1056_ad09ca crossref_primary_10_1140_epjc_s10052_022_10377_y crossref_primary_10_1103_PhysRevResearch_5_023171 crossref_primary_10_1103_PhysRevA_104_032401 crossref_primary_10_1109_JETCAS_2022_3202870 crossref_primary_10_1016_j_future_2025_107906 crossref_primary_10_1109_TIT_2023_3250100 crossref_primary_10_1016_j_jfranklin_2022_10_027 crossref_primary_10_1103_PhysRevResearch_5_043285 crossref_primary_10_1109_MNANO_2025_3585998 crossref_primary_10_3367_UFNr_2021_02_038934 crossref_primary_10_3367_UFNe_2021_02_038934 crossref_primary_10_1088_2058_9565_ad895c crossref_primary_10_1103_PhysRevA_111_012416 crossref_primary_10_2478_qic_2025_0006 crossref_primary_10_1103_PhysRevResearch_6_013223 crossref_primary_10_1007_s12033_023_00863_3 crossref_primary_10_1103_PhysRevE_110_065306 crossref_primary_10_1016_j_future_2025_107934 crossref_primary_10_3390_e26121025 crossref_primary_10_1038_s41598_024_70649_3 crossref_primary_10_1109_ACCESS_2025_3578780 crossref_primary_10_1103_PhysRevApplied_19_044001 crossref_primary_10_1109_TCOMM_2022_3185287 crossref_primary_10_1007_s00521_022_07438_4 crossref_primary_10_1109_TQE_2021_3066275 crossref_primary_10_1109_TQE_2023_3325167 crossref_primary_10_1103_v1sh_fg6f crossref_primary_10_1038_s42005_025_02145_7 crossref_primary_10_1137_22M1514581 crossref_primary_10_1038_s41534_021_00440_z crossref_primary_10_1038_s41566_022_01019_6 crossref_primary_10_1007_s43673_022_00058_z crossref_primary_10_1109_LSP_2024_3480043 crossref_primary_10_1038_s41534_024_00825_w crossref_primary_10_1103_PRXQuantum_3_020365 crossref_primary_10_1088_2058_9565_ac26af crossref_primary_10_1103_PhysRevApplied_20_014024 crossref_primary_10_1103_PhysRevApplied_19_024043 crossref_primary_10_1088_2632_2153_ada0a4 crossref_primary_10_1109_ACCESS_2025_3550788 crossref_primary_10_1103_62wx_tvk5 crossref_primary_10_1063_5_0189374 crossref_primary_10_1103_PhysRevResearch_6_023026 crossref_primary_10_1088_2058_9565_ac9013 crossref_primary_10_1103_PRXQuantum_2_030318 crossref_primary_10_1016_j_scib_2021_10_017 crossref_primary_10_1103_PhysRevResearch_6_023031 crossref_primary_10_1016_j_apenergy_2024_122878 crossref_primary_10_1103_jkf7_wfcn crossref_primary_10_1109_MNET_012_2000770 crossref_primary_10_1038_s41598_024_67922_w crossref_primary_10_1103_PhysRevA_103_042412 crossref_primary_10_1007_s42484_023_00132_1 crossref_primary_10_1103_PhysRevResearch_5_043005 crossref_primary_10_1103_PhysRevResearch_5_043126 crossref_primary_10_1103_PhysRevResearch_5_033159 crossref_primary_10_1007_s11432_022_3511_5 crossref_primary_10_1103_PRXQuantum_2_030346 crossref_primary_10_1103_PhysRevResearch_7_023240 crossref_primary_10_1103_PhysRevX_11_021026 crossref_primary_10_1038_s44172_023_00061_8 crossref_primary_10_1109_TQE_2022_3175267 crossref_primary_10_1038_s41534_021_00496_x crossref_primary_10_1038_s41598_022_20853_w crossref_primary_10_3390_electronics11071033 crossref_primary_10_1109_TCE_2024_3476156 crossref_primary_10_1103_PhysRevApplied_23_034022 crossref_primary_10_1088_1367_2630_acb22c crossref_primary_10_1103_PhysRevResearch_4_013141 crossref_primary_10_1038_s41598_023_45540_2 crossref_primary_10_1038_s41567_021_01356_3 crossref_primary_10_1038_s42005_025_02136_8 crossref_primary_10_1103_PhysRevResearch_4_023249 crossref_primary_10_1088_2058_9565_ac91ef crossref_primary_10_1103_PhysRevApplied_22_054037 crossref_primary_10_1063_5_0068255 crossref_primary_10_1038_s41534_022_00596_2 crossref_primary_10_1016_j_neunet_2024_106508 crossref_primary_10_1103_PRXQuantum_3_040339 crossref_primary_10_1038_s41534_024_00906_w crossref_primary_10_1103_PhysRevApplied_21_044035 crossref_primary_10_1103_PhysRevA_107_062406 crossref_primary_10_1103_PhysRevResearch_5_013097 crossref_primary_10_1109_TASC_2025_3540049 crossref_primary_10_1103_PhysRevApplied_16_054023 crossref_primary_10_1126_science_abo6587 crossref_primary_10_1038_s42005_024_01577_x crossref_primary_10_1038_s41598_024_76967_w crossref_primary_10_1088_2058_9565_aca3ce crossref_primary_10_1038_s41598_022_10555_8 crossref_primary_10_1088_2058_9565_ad35e4 crossref_primary_10_1103_PhysRevResearch_7_023142 crossref_primary_10_1103_PhysRevResearch_3_013286 crossref_primary_10_1088_1361_6455_ac6366 crossref_primary_10_1103_PRXQuantum_3_040326 crossref_primary_10_1007_s42484_024_00167_y crossref_primary_10_1103_PhysRevLett_127_110504 crossref_primary_10_3390_computers14080310 crossref_primary_10_1103_PhysRevApplied_20_034062 crossref_primary_10_1103_PhysRevApplied_20_064016 crossref_primary_10_1103_PhysRevResearch_7_023123 crossref_primary_10_1109_ACCESS_2023_3336989 crossref_primary_10_1038_s41467_022_33335_4 crossref_primary_10_1038_s41586_022_04603_6 crossref_primary_10_1631_jzus_A2400397 crossref_primary_10_3390_a15100356 crossref_primary_10_1007_s11433_024_2501_4 crossref_primary_10_1103_PhysRevX_11_021058 crossref_primary_10_1002_qute_202300461 crossref_primary_10_1038_s41534_023_00787_5 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021. |
| DBID | 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1038/s41567-020-01105-y |
| DatabaseName | ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1745-2481 |
| EndPage | 336 |
| GroupedDBID | 0R~ 123 29M 39C 3V. 4.4 6OB 70F 7U5 7XB 88I 8FD 8FE 8FG 8FH 8FK 8R4 8R5 AARCD AAYZH ABFSG ABJNI ABLJU ABUWG ABZEH ACBWK ACGFO ACGFS ACGOD ACMJI ACSTC ADBBV ADFRT AENEX AEUYN AEZWR AFANA AFBBN AFHIU AFKRA AFSHS AFWHJ AGAYW AHBCP AHOSX AHSBF AHWEU AIBTJ AIXLP ALFFA ALMA_UNASSIGNED_HOLDINGS ALPWD AMTXH ARAPS ARMCB ASPBG ATHPR AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ CCPQU DU5 DWQXO EBS EE. EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ L7M LK5 M2P M7R N9A NNMJJ O9- P2P P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PROAC Q2X Q9U RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG |
| ID | FETCH-LOGICAL-c385t-1df261feabe31347d90dff4b5f2fe39599666b57e7a0a75c43398f6fa985cd8e3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 358 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000614789700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1745-2473 |
| IngestDate | Sat Aug 23 13:29:06 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c385t-1df261feabe31347d90dff4b5f2fe39599666b57e7a0a75c43398f6fa985cd8e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2499401004 |
| PQPubID | 27545 |
| PageCount | 5 |
| ParticipantIDs | proquest_journals_2499401004 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-01 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Nature physics |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group |
| SSID | ssj0042613 |
| Score | 2.7338927 |
| Snippet | Faster algorithms for combinatorial optimization could prove transformative for diverse areas such as logistics, finance and machine learning. Accordingly, the... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 332 |
| SubjectTerms | Algorithms Combinatorial analysis Gates (circuits) Graph theory Graphs Hardware Logistics Machine learning Microprocessors Optimization Optimization algorithms Quantum computers Qubits (quantum computing) Superconductivity |
| Title | Quantum approximate optimization of non-planar graph problems on a planar superconducting processor |
| URI | https://www.proquest.com/docview/2499401004 |
| Volume | 17 |
| WOSCitedRecordID | wos000614789700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagBYmFN-JRKg-sVpM4D3tCgFoxQBUQoIqlchxbqkSTkDQI_j1n1xUDEgtLllusc-7xne--Q-gihxxA01wTrT1GQoi4RGQMzJ1mksZciNgW9F_ukvGYTSY8dQW3xrVVrnyiddR5KU2NfAAwgQMWgDu9rN6J2RplXlfdCo111IXMxjctXfdBuvLEBh3Q5UBkRIIwoW5oxqNs0BjgkhADnkwEjMjXL2dsI8xo579n20XbLrfEV8ufYQ-tqWIfbdoeT9kcIPnQghrbObY84p8zyFUVLsFlzN0sJi41LsqCVG-iEDW2XNbYbZxpMMgFdqKmrVQNSNqQxULsw9Vy3KCsD9HzaPh0c0vcjgUiKYsWxM81aEkrkSlqpkpz7uVah1mkA60oN-QtcZxFiUqEJ5JIhpRypmMtODO0AooeoQ6cTB0jrHMWSyp47CsR-kyDafsBwCupPCECpU5Qb6W9qTOUZvqjutO_xWdoKzDtJLb9q4c6i7pV52hDfixmTd1H3evhOH3s2_uHbxq9fgNj07uI |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB5qVfTiW3xU3YMeF9NsHpuDiPigpbVUqOKtbja7ULBJTVq1f8rf6Gya4EHw1oPngZBkJt_Mt5lvBuA0whpAs0hTrS1OHcy4VIQcP3cWSuYFQnj5gf5T2-90-PNz0K3AV6mFMW2VJSbmQB0l0pyRnyNNCJALoE8vR2_UbI0yf1fLFRqzsGip6QdStuyieYP-PbPtu9vedYMWWwWoZNwd03qkkTVoJULFjI4yCqxIayd0ta0VC8y4Es8LXV_5whK-Kx3GAq49LQJuhPSK4XUXYNExk8VMq6DdLZHfsBE2E2C61HZ8Voh0LMbPM0OUfGrImsm4Lp3-Av88o92t_7d3sQFrRe1MrmbBvgkVFW_Bct7DKrNtkA8TDJPJkORz0j8HWIsrkiAkDgutKUk0iZOYjl5FLFKSz-omxUadjKBdkMKUTUYqlUlshuFibiejmZwiSXfgcS5PuAtVvDO1B0RH3JNMBF5dCafONUJX3Ub6KJUlhK3UPtRKb_ULIMj6P646-Nt8AiuN3n273252WoewapvWmbzVrQbVcTpRR7Ak38eDLD3OY47Ay7wd-w3N2hc4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB7WJ158i49Vc9Bj2LbpIz2IiLooyrKCinhZ0zSBBbet7dbHX_PXOem2eBC8efAcKE1nMjNf-n0zAAcx1gCaxZpqbXHqYsalIuJ43FkkmR8K4VcX-vfXQa_HHx7Cfgs-Gy2MoVU2MbEK1HEqzR15B2FCiFgAbdrRNS2if9Y9zl6omSBl_rQ24zQmLnKlPt4QvhVHl2do60PH6Z7fnl7QesIAlYx7Y2rHGhGEViJSzGgq49CKtXYjTztasdC0LvH9yAtUICwReNJlLOTa1yLkRlSvGD53CmYCxJiGTtj3HpssYJAJm4gxPeq4AasFOxbjncKApoAa4Gayr0c_fiSCKrt1l_7zd1mGxbqmJieTQ7ACLZWswlzFbZXFGsibEt2nHJGqf_r7EGt0RVIMlaNag0pSTZI0odmzSEROqh7epJ60UxBcF6ReKspM5TJNTJNczPkkm8gs0nwd7v5khxswjW-mNoHomPuSidC3lXBtrjGk2Q7CSqksIRyltqDdWG5QB4hi8G227d-X92Ee7Tm4vuxd7cCCYxg1FQOuDdPjvFS7MCtfx8Mi36vcj8DTX9v1C6jTICQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+approximate+optimization+of+non-planar+graph+problems+on+a+planar+superconducting+processor&rft.jtitle=Nature+physics&rft.au=Harrigan%2C+Matthew+P&rft.au=Sung%2C+Kevin+J&rft.au=Neeley%2C+Matthew&rft.au=Satzinger%2C+Kevin+J&rft.date=2021-03-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=17&rft.issue=3&rft.spage=332&rft.epage=336&rft_id=info:doi/10.1038%2Fs41567-020-01105-y&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |